US009333421B2

a2 United States Patent
Walls

US 9,333,421 B2
May 10, 2016

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEMS AND METHODS FOR A TOKEN
MATCH GAME

(71)
(72)

Applicant: David Walls, Boxford, MA (US)
Inventor: David Walls, Boxford, MA (US)
(73)

")

Assignee: Funkitron, Inc., Boxford, MA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 91 days.

@
(22)

Appl. No.: 14/182,026

Filed: Feb. 17, 2014

(65) Prior Publication Data

US 2014/0235306 Al Aug. 21, 2014

Related U.S. Application Data

Provisional application No. 61/766,283, filed on Feb.
19, 2013.

(60)

Int. Cl1.
AG63F 13/00
AG63F 13/40
U.S. CL
CPC

(51
(2014.01)
(2014.01)
(52)
............... AG63F 13/005 (2013.01); A63F 13/10
(2013.01); A63F 2300/308 (2013.01); AG3F
2300/6036 (2013.01); A63F 2300/61 (2013.01)
Field of Classification Search
USPC 463/7, 8,9, 10
See application file for complete search history.

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

2005/0215311 Al* 9/2005 Homiketal. 463/20
2005/0288094 Al* 12/2005 Marksetal. 463/20
2007/0205556 Al* 9/2007 Roemeretal. 273/273

2010/0259006 Al 10/2010 Factor
2013/0331162 Al 12/2013 Krivicich et al.
2014/0370950 Al* 12/2014 Hansson A63F 13/2145

463/9

OTHER PUBLICATIONS

International Search Report and Written Opinion for PCT/US2014/
016708 dated Jun. 11, 2014 (14 pages).

Kellie Cardwell-Winters: “Gems With Friends Walkthrough Cheats
and Strategy Guide; Gamezebo”, Sep. 10, 2010, XP055120149,
Retrieved from the Internet: URL:http://www.gamezebo.com/
games/gems-friends/walkthrough-cheats-strategy-guide [retrieved
on May 26, 2014].

Wikipedia: “Qwirkle—Wikipedia, the free encyclopedia”, Dec. 30,
2010, XP055120152, Retrieved from the internet: URL:https://web.
archive.org/web/20101230204819/http://en.wikipedia.org/wiki/
Qwirkle [retrieved on May 26, 2014].

Wikipedia: “SameGame—Wikipedia, the free encyclopedia”, Sep.
16, 2012, XP055120482, Retrieved from the Internet: URL:http//en.
wikipedia.org/w/index.php?title=SameGame&oldid=512982586
[retrieved on May 27, 2014].

* cited by examiner

Primary Examiner — Paul A D’ Agostino

Assistant Examiner — Brandon Gray

(74) Attorney, Agent, or Firm — Daniel Rose; Christopher J.
McKenna; Foley & Lardner LLP

(57) ABSTRACT

An mx] array of randomly selected tokens may be provided as
a playing field, and a second nx1 array of randomly selected
tokens may be provided as ahand. The player may select a cell
within the mx! array to replace the token in said cell with a
token in a corresponding cell of the nxl array. If the replace-
ment results in a region of adjacent identical tokens in the mxl1
array, the tokens may be removed and the player’s score
incremented. If no plays are possible from the player’s hand,
the player may draw a new hand of randomly selected tokens
to replace the tokens and/or blank spaces in the nxl array. Play
continues until the player has exhausted a predetermined
number of opportunities to draw a new hand.

20 Claims, 58 Drawing Sheets

2
=

OO >

2084

9]

T
'
l

O[O

208b

O

O ICIOIKQEOIO>

> [<QOOKQILIO0
=

O [QIRIOIOIOIQK

Ol >

US 9,333,421 B2

Sheet 1 of 58

May 10, 2016

U.S. Patent

npgn
nfin
-
11 o c
nd In c©
mo
-
»n

uzol
sty

vi ‘614

2901
FEYNETS

qso0l
FEYNETS

e e e
———————
e
[

y

141"
YIOM)aN

ezol
Jual|d

US 9,333,421 B2

Sheet 2 of 58

May 10, 2016

U.S. Patent

gl b4
-20€ £~ 9}
|/ S0INS(] /-
$901A9q O Bunuiod preoghey
:.mwﬁ)
9}
g mUmtmE_ N (S)ea1nap Td.LO Ol
SIOMION 80IA8(] Uone||eIsu| Aeidsig -
>
08}
Shells) fJows|\ ulepy Ndd
00k | owebuen - 1 —
9IBM)JOS
SO
T
14 w/|\\
-
~— T~
00}

US 9,333,421 B2

Sheet 3 of 58

May 10, 2016

U.S. Patent

qoeL

oL b4
201N
o/l
u-epgl
(1149
abpug
201Aa (] 0L ——
O/l £01 —
Aiowas Hod Hod
c_ms__z fiowspy | o [Hod O/
(44’
) ‘_owcm_mn_w“_zn_
ovL__ .
X4

00t

US 9,333,421 B2

Sheet 4 of 58

May 10, 2016

U.S. Patent

ai ‘614

00} Jojeisusb abus|jeyd

¥91 wabe yiomaN

29| asegejep 8100g

09} J8juno9o 81098

86| auibuse sajny

0G| Jaunoo snuog

$G1 J8yunoo uidg

ZG1 Jojeisusb uayo|

0G| piel swes

0zZ1 sweb yoepn

US 9,333,421 B2

Sheet 5 of 58

May 10, 2016

U.S. Patent

veZ ‘B6i4

-
Sl
(&l

o () = o
N gl O O O
= S S S

OICIOOIOIC] O
OOICIOIO0IC] K
e 1O

([<OIOIKAICIONO] o>
OlololoOlc|O O
Ol<OIC[O[O[O] [

UL[O[COIC 1010 O

A

US 9,333,421 B2

May 10, 2016 Sheet 6 of 58

U.S. Patent

?%QOQQOM@NQ
SIA[AVICIOO
O OISO A 5™
SOOIl
VO[O OI00[O]
OIOICIOICIOG
OloONVIGIVIG

=LA/ | OOV OO

US 9,333,421 B2

May 10, 2016 Sheet 7 of 58

U.S. Patent

?%OOQQQU@Ng
SIAJAIVIOOO
O@O&@&@Hw
Ne e RE
VOO0 ..
OSSOSO
OOV GV [G

w1 /| OO | OO

US 9,333,421 B2

May 10, 2016 Sheet 8 of 58

U.S. Patent

ae ‘b4

O |

OO O[O [

CICIOOIOIRIC] O
OOICICIO0C]]

OIS [O

'''''

OIOITOIO A O

<CIOICIOI0) O

U.S. Patent May 10, 2016 Sheet 9 of 58 US 9,333,421 B2

Fill m x [array with tokens
302

Match
possible?
304

ore spin)
Yes remaingxg? Provide bonus
306 wheel 308
Receive user request
for spin 310
+ : Fill n 2
Decrement spin Hinx [array
counter 312 | with tokens
o 314
: T
Receive user selection of m, [within

P> vy

m x [array 316 Increment bonus

counter 320

Token
atn, Z] within

Indicate invalid
selection 320

n x [array
n x [array generates empty? 324

match? 318

Replace token at m, [] with token at

|w
n
Q
w

U.S. Patent May 10, 2016 Sheet 10 of 58 US 9,333,421 B2

Fig. 4A

U.S. Patent May 10, 2016 Sheet 11 of 58 US 9,333,421 B2

Fig. 4B

U.S. Patent May 10, 2016 Sheet 12 of 58 US 9,333,421 B2

Big Score
Score 1,000,000 poinis in
a game.
You have successfully
earned this award.

Fig. 4C

U.S. Patent May 10, 2016 Sheet 13 of 58 US 9,333,421 B2

Play 100 Games.
u've played 79 games.

Fig. 4D

U.S. Patent May 10, 2016 Sheet 14 of 58 US 9,333,421 B2

Fig. 4E

U.S. Patent May 10, 2016 Sheet 15 of 58 US 9,333,421 B2

Welcome to Cascade!

Fig. 4F

U.S. Patent May 10, 2016 Sheet 16 of 58

Welcome to Cascadel

{ next)

Tap here fo start a game of
Cascade.

US 9,333,421 B2

Change the board size here.

6aBL 0

& a50 480

Do something omazing in the
goame and you will get an

e, award! Tap here {o see the

<j:> awards,

Tap the player bulfon to see ;“"W} (next >
pvy S E————

your stats and change your

name.
(_back)

Tap here to play the
challenge of the day.

Cnext)

<>

Your Al Tie, Top Scores |

P}

1. Plouar | = B384 180
& Visier 1

Top scores are recorded
here.

(back) (next)

Use the arrow butfons fo
move belween top score
lists,

Tap here fo gel more great
Funkitron games!

(_back)

D)
This button lels you share the Tap here to change muster

game with others. if you like volume, music volume, and
the game, fell your fends other options.

aboutitt v

{ back) { next J

That's all for now. Tap "Help'
on any screen o leam more

aboul it

U.S. Patent May 10, 2016 Sheet 17 of 58 US 9,333,421 B2

Fig. 4H

U.S. Patent May 10, 2016 Sheet 18 of 58 US 9,333,421 B2

Fig. 41

U.S. Patent May 10, 2016 Sheet 19 of 58 US 9,333,421 B2

Fig. 4J

U.S. Patent May 10, 2016 Sheet 20 of 58 US 9,333,421 B2

Fig. 5A

U.S. Patent May 10, 2016 Sheet 21 of 58 US 9,333,421 B2

-
S S SO R . T BB

Fig. 5B

U.S. Patent May 10, 2016 Sheet 22 of 58 US 9,333,421 B2

o

Fig. 5C

U.S. Patent May 10, 2016 Sheet 23 of 58 US 9,333,421 B2

.

Fig. 6A

U.S. Patent May 10, 2016 Sheet 24 of 58 US 9,333,421 B2

S O S S S SIS

Fig. 6B

U.S. Patent May 10, 2016 Sheet 25 of 58 US 9,333,421 B2

- i s

Fig. 6C

U.S. Patent May 10, 2016 Sheet 26 of 58 US 9,333,421 B2

Fig. 7A

U.S. Patent May 10, 2016 Sheet 27 of 58 US 9,333,421 B2

- s s s i

Fig. 7B

U.S. Patent May 10, 2016 Sheet 28 of 58 US 9,333,421 B2

R R

Fig. 7C

U.S. Patent May 10, 2016 Sheet 29 of 58 US 9,333,421 B2

Fig. 8A

U.S. Patent May 10, 2016 Sheet 30 of 58 US 9,333,421 B2

Fig. 8B

U.S. Patent May 10, 2016 Sheet 31 of 58 US 9,333,421 B2

Fig. 8C

U.S. Patent May 10, 2016 Sheet 32 of 58 US 9,333,421 B2

And make a malch!

Fig. 8D

U.S. Patent May 10, 2016 Sheet 33 of 58 US 9,333,421 B2

Fig. 8E

U.S. Patent May 10, 2016 Sheet 34 of 58 US 9,333,421 B2

Malch Each Gem

3 or more of
the same color.

Fig. 8F

U.S. Patent May 10, 2016 Sheet 35 of 58 US 9,333,421 B2

Fig. 8G

U.S. Patent May 10, 2016 Sheet 36 of 58 US 9,333,421 B2

7 or more gems fo make
diamonds.

Fig. 8H

U.S. Patent May 10, 2016 Sheet 37 of 58 US 9,333,421 B2

wonds to make

Fig. 81

U.S. Patent May 10, 2016 Sheet 38 of 58 US 9,333,421 B2

ier wilds malch any color and
make keys.

Fig. 8J

U.S. Patent May 10, 2016 Sheet 39 of 58 US 9,333,421 B2

-more keus for a super

Fig. 8K

U.S. Patent May 10, 2016 Sheet 40 of 58 US 9,333,421 B2

Fig. 9A

U.S. Patent May 10, 2016 Sheet 41 of 58 US 9,333,421 B2

Fig. 9B

US 9,333,421 B2

Sheet 42 of 58

May 10, 2016

U.S. Patent

Fig. 9C

U.S. Patent May 10, 2016 Sheet 43 of 58 US 9,333,421 B2

Fig. 10A

U.S. Patent May 10, 2016 Sheet 44 of 58 US 9,333,421 B2

Fig. 10B

U.S. Patent May 10, 2016 Sheet 45 of 58 US 9,333,421 B2

1108c

1108b

1108a

1106 1110a 1L10b

1100

Fig. 11A

U.S. Patent May 10, 2016 Sheet 46 of 58 US 9,333,421 B2

1108i

1108h

1108¢

1108f

1108e

1106 1110a 1L10b

1100’

Fig. 11B

U.S. Patent May 10, 2016 Sheet 47 of 58 US 9,333,421 B2

1214 - N 1216

1206

1204

Fig. 12A

U.S. Patent May 10, 2016 Sheet 48 of 58 US 9,333,421 B2

1208

1200’

Fig. 12B

U.S. Patent May 10, 2016 Sheet 49 of 58 US 9,333,421 B2

1228

Fig. 12C

U.S. Patent May 10, 2016 Sheet 50 of 58 US 9,333,421 B2

1230

.

.

.
%%’
0%

@&ﬁﬁ%@ .

1200™

Fig. 12D

U.S. Patent May 10, 2016 Sheet 51 of 58 US 9,333,421 B2

‘l 200""

Fig. 12E

U.S. Patent May 10, 2016 Sheet 52 of 58 US 9,333,421 B2

1308¢

Fig. 13A

U.S. Patent May 10, 2016 Sheet 53 of 58 US 9,333,421 B2

1308¢

1308a

1308b

1300b

Fig. 13B

U.S. Patent May 10, 2016 Sheet 54 of 58 US 9,333,421 B2

1402 1404 1406 1408

Fig. 14A

1410 1412 1414

Fig. 14B

Fig. 14C

U.S. Patent May 10, 2016 Sheet 55 of 58 US 9,333,421 B2

1500a

Fig. 15A

U.S. Patent May 10, 2016 Sheet 56 of 58 US 9,333,421 B2

1522

Fig. 15B

U.S. Patent May 10, 2016 Sheet 57 of 58 US 9,333,421 B2

1522

1500p'

Fig. 15C

U.S. Patent May 10, 2016 Sheet 58 of 58 US 9,333,421 B2

US 9,333,421 B2

1
SYSTEMS AND METHODS FOR A TOKEN
MATCH GAME

RELATED APPLICATIONS

This application claims priority to and the benefit of U.S.
Provisional Application No. 61/766,283, entitled “Systems
and Methods for a Token Match Game,” filed Feb. 19, 2013,
the entirety of which is hereby incorporated by reference.

FIELD OF THE DISCLOSURE

The present disclosure relates to systems and methods for
a computer video game. In particular, the present disclosure
relates to a token match game utilizing a first random array to
match against a second random array.

BACKGROUND OF THE DISCLOSURE

Many users of portable computing devices, such as tablet
computers and smart phones, play short video games, fre-
quently referred to as “casual” games. As opposed to many
computer games on desktop computers or console computing
devices which may require many hours to play through a
single game to completion, casual games typically require
less time to play and may be used for brief periods of enter-
tainment throughout the day.

Casual games exist in every genre, including action games,
sports games, card games, and puzzle games. One subset of
the puzzle game genre is the “match-3 game,” in which a field
or array of icons or tokens are provided to the player. In one
common implementation, the player may select a token to
swap with an adjacent token in the array. If, after swapping,
three or more identical tokens are adjacent in the array, the
identical tokens are removed, a player score is incremented,
and the resulting empty spots in the array are filled.

Once the initial board or field is filled, typical match-3
games only introduce any randomness when empty spots in
the array are filled. In fact, one subset of these games does not
introduce any further randomness, and instead have emptying
the field through matches to leave the fewest number of
remaining tokens as the object of the game. Accordingly,
these games may rely more on strategy and long-term plan-
ning than luck, which is not preferred by all players.

BRIEF SUMMARY OF THE DISCLOSURE

To provide additional randomness and luck into game play
while still allowing for strategy and planning, the systems and
methods discussed herein provide an improved match game
with a first array of tokens that may be used to replace corre-
sponding tokens in a second array to create a region of adja-
cent identical tokens for scoring purposes. An mxl array of
randomly selected tokens may be provided as a playing field,
and a second nxl array of randomly selected tokens may be
provided as a hand. The player may select a cell within the
mx] array to replace the token in said cell with a token in a
corresponding cell of the nx] array. If the replacement results
in a region of adjacent identical tokens in the mxl array, the
tokens may be removed and the player’s score incremented. If
no plays are possible from the player’s hand, the player may
draw a new hand of randomly selected tokens to replace the
tokens and/or blank spaces in the nxl array. Play continues
until the player has exhausted a predetermined number of
opportunities to draw a new hand.

In one aspect, the present disclosure is directed to a method
for a token match game. The method includes providing, by a

10

15

20

25

30

35

40

45

50

55

60

65

2

token generator executed by a processor of a computing
device, an mxl array of randomly selected tokens. The
method also includes providing, by the token generator, an
nxl array of randomly selected tokens. The method further
includes receiving, by a rules engine executed by the proces-
sor, a selection of a cell within the mx] array. The method
further includes determining, by the rules engine, that
replacement of a first token in the selected cell within the mxl1
array with a second token from a corresponding cell of the nxl1
array results in a region of adjacent identical tokens within the
mx] array. The method also includes removing, by the rules
engine, the tokens of the region of adjacent identical tokens
within the mx] array, responsive to the determination.

In one embodiment, the method includes incrementing a
score for a user, by the rules engine, responsive to removal of
the tokens of the region of adjacent identical tokens within the
mx] array. In another embodiment, the method includes com-
prising providing, by the token generator, a number of addi-
tional tokens corresponding to the number of removed tokens
of'the region of adjacent identical tokens within the mxl array.
In still another embodiment, the method includes iteratively
shifting a token in the mx] array into an adjacent cell not
including a token until at least one cell at the edge of the mxI1
array does not include a token; and providing, by the token
generator, at least one new token for the corresponding at least
one cell.

In some embodiments, the method includes identifying, by
the rules engine, that a token adjacent to the region of adjacent
identical tokens within the mx] array is a wild token; and
removing, by the rules engine, the wild token and at least one
additional token from the mx1 array identical to the first token,
but not adjacent to the region of adjacent identical tokens. In
another embodiment, the method includes identitying, by the
rules engine, that no replacement of a third token in a cell
within the mx] array with a fourth token from a corresponding
cell of the nxl array results in a region of adjacent identical
tokens within the mxl array; and providing, by the token
generator, a second nx! array of randomly selected tokens,
responsive to the identification. In a further embodiment, the
method includes providing an interface element to a user;
receiving a selection of the interface element by the user; and
providing the third nxl array of randomly selected tokens,
responsive to the selection of the interface element by the
user. In a still further embodiment, the interface element is a
lever. In another further embodiment, the method includes
providing the second nxl array of randomly selected tokens
further comprises replacing a previous nxl array. In yet
another further embodiment, the method includes decrement-
ing a hand counter.

In another aspect, the present disclosure is directed to a
system for a token match game. The system includes a com-
puting device comprising a processor executing a token gen-
erator and a rules engine. The token generator is configured
for: providing an mxl array of randomly selected tokens, and
providing an nx!l array of randomly selected tokens. The rules
engine is configured for receiving a selection of a cell within
the mx] array; determining that replacement of a first token in
the selected cell within the mxl1 array with a second token
from a corresponding cell of the nxl array results in a region
of'adjacent identical tokens within the m x/array; and remov-
ing the tokens of the region of adjacent identical tokens within
the mx] array, responsive to the determination.

In one embodiment of the system, the rules engine is fur-
ther configured for incrementing a score for auser, responsive
to removal of the tokens of the region of adjacent identical
tokens within the mxl array. In another embodiment of the
system, the token generator is further configured for provid-

US 9,333,421 B2

3

ing a number of additional tokens corresponding to the num-
ber of removed tokens of the region of adjacent identical
tokens within the mxl array.

In some embodiments of the system, the rules engine is
further configured for iteratively shifting a token in the mxI1
array into an adjacent cell not including a token until at least
one cell at the edge of the mx1 array does not include a token.
The token generator is further configured for providing at
least one new token for the corresponding at least one cell.

In other embodiments of the system, the rules engine is
further configured for identifying that a token adjacent to the
region of adjacent identical tokens within the mxl array is a
wild token; and removing the wild token and at least one
additional token from the mxl array identical to the first token,
but not adjacent to the region of adjacent identical tokens.

In some embodiments of the system, the rules engine is
further configured for identifying that no replacement of a
third token in a cell within the mx] array with a fourth token
from a corresponding cell of the nxl array results in a region
of adjacent identical tokens within the m x/array; and the
token generator is further configured for providing a second
nxl array of randomly selected tokens, responsive to the iden-
tification. In a further embodiment, the rules engine is further
configured for providing an interface element to a user, and
receiving a selection of the interface element by the user; and
the token generator is further configured for providing the
third nxl1 array of randomly selected tokens, responsive to the
selection of the interface element by the user. In a still further
embodiment, the interface element is a lever. In another fur-
ther embodiment, the token generator is further configured
for providing the second nxl array of randomly selected
tokens by replacing a previous nxl array. In yet another fur-
ther embodiment, the rules engine is further configured for
decrementing a hand counter, responsive to the token genera-
tor providing the second nxl array of randomly selected
tokens.

BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing
executed in color. Copies of this patent or patent application
publication with color drawings will be provided by the
Office upon request and payment of the necessary fee.

The foregoing and other objects, aspects, features, and
advantages of the disclosure will become more apparent and
better understood by referring to the following description
taken in conjunction with the accompanying drawings, in
which:

FIG. 1A is a block diagram depicting an embodiment of a
network environment comprising client devices in communi-
cation with server devices;

FIGS. 1B and 1C are block diagrams depicting embodi-
ments of computing devices useful in connection with the
methods and systems described herein;

FIG. 1D is a block diagram of an embodiment of a token
match game;

FIGS. 2A-2D are diagrams illustrating successive steps of
token selection, replacement, and scoring in an embodiment
of a token match game;

FIG. 3 is a flow chart of an embodiment of a method for
executing a token match game;

FIGS. 4A-4] are screenshots of menu, help, and configu-
ration screens of an embodiment of a token match game;

FIGS. 5A-5C are screenshots illustrating successive steps
of token selection, replacement, and scoring in an embodi-
ment of a token match game;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIGS. 6 A-6C are screenshots illustrating successive steps
ofutilization of a wildcard within a created region of identical
tokens in an embodiment of a token match game;

FIGS. 7A-7C are screenshots illustrating successive steps
of matching tokens to clear a board in an embodiment of a
token match game;

FIGS. 8A-8K are screenshots of help screens of an embodi-
ment of a token match game;

FIGS. 9A-9C are successive screenshots of a bonus wheel
of'an embodiment of a token match game;

FIGS. 10A and 10B are screenshots of embodiments of
screens presented upon completion of a token match game;

FIGS. 11A and 11B are screenshots of embodiments of a
level selection screen for a token match game;

FIGS. 12A-12E are screenshots of embodiments of levels
of a token match game;

FIGS. 13A-13B are successive screenshots depicting an
embodiment of a token match game with a falling token
mechanism;

FIGS. 14A-14B illustrates embodiments of icons for pow-
ers and game play boosts for a token match game;

FIG. 14C illustrates embodiments of icons for displaying
or performing various functions on a life meter for an embodi-
ment of a token match game;

FIG. 15A is a screenshot of an embodiment of a level
information screen for a token match game;

FIG. 15B is a screenshot of an embodiment of a boost
purchase screen for a token match game;

FIG. 15C is a screenshot of an embodiment of a power
purchase screen for a token match game; and

FIG. 16 is a screenshot of an embodiment of a level
completion screen for a token match game.

DETAILED DESCRIPTION

Prior to discussing specific embodiments of the present
solution, it may be helpful to describe aspects of the operating
environment as well as associated system components (e.g.,
hardware elements) in connection with the methods and sys-
tems described herein. For example, these system compo-
nents may be used to provide a token match game to a client
device for execution; may be used to communicate informa-
tion regarding high scores or daily challenges; or for other
social networking functions discussed in more detail below.
Referring to FIG. 1A, an embodiment of a network environ-
ment is depicted. In brief overview, the network environment
includes one or more clients 102¢-102% (also generally
referred to as local machine(s) 102, client(s) 102, client
node(s) 102, client machine(s) 102, client computer(s) 102,
client device(s) 102, endpoint(s) 102, or endpoint node(s)
102) in communication with one or more servers 106a-106»
(also generally referred to as server(s) 106, node 106, or
remote machine(s) 106) via one or more networks 104. In
some embodiments, a client 102 has the capacity to function
as both a client node seeking access to resources provided by
a server and as a server providing access to hosted resources
for other clients 1024-1027.

Although FIG. 1A shows a network 104 between the cli-
ents 102 and the servers 106, the clients 102 and the servers
106 may be on the same network 104. In some embodiments,
there are multiple networks 104 between the clients 102 and
the servers 106. In one of these embodiments, a network 104'
(not shown) may be a private network and a network 104 may
be a public network. In another of these embodiments, a
network 104 may be a private network and a network 104' a
public network. In still another of these embodiments, net-
works 104 and 104' may both be private networks.

US 9,333,421 B2

5

The network 104 may be connected via wired or wireless
links. Wired links may include Digital Subscriber Line
(DSL), coaxial cable lines, or optical fiber lines. The wireless
links may include BLUETOOTH, Wi-Fi, Worldwide Interop-
erability for Microwave Access (WiMAX), an infrared chan-
nel or satellite band. The wireless links may also include any
cellular network standards used to communicate among
mobile devices, including standards that qualify as 1G, 2G,
3G, or 4G. The network standards may qualify as one or more
generation of mobile telecommunication standards by fulfill-
ing a specification or standards such as the specifications
maintained by International Telecommunication Union. The
3G standards, for example, may correspond to the Interna-
tional Mobile Telecommunications-2000 (IMT-2000) speci-
fication, and the 4G standards may correspond to the Inter-
national Mobile Telecommunications Advanced (IMT-
Advanced) specification. Examples of cellular network
standards include AMPS, GSM, GPRS, UMTS, LTE, LTE
Advanced, Mobile WIMAX, and WiMAX-Advanced. Cellu-
lar network standards may use various channel access meth-
odse.g. FDMA, TDMA, CDMA, or SDMA. In some embodi-
ments, different types of data may be transmitted via different
links and standards. In other embodiments, the same types of
data may be transmitted via different links and standards.

The network 104 may be any type and/or form of network.
The geographical scope of the network 104 may vary widely
and the network 104 can be a body area network (BAN), a
personal area network (PAN), a local-area network (LAN),
e.g. Intranet, a metropolitan area network (MAN), awide area
network (WAN), or the Internet. The topology of the network
104 may be of any form and may include, e.g., any of the
following: point-to-point, bus, star, ring, mesh, or tree. The
network 104 may be an overlay network which is virtual and
sits on top of one or more layers of other networks 104'. The
network 104 may be of any such network topology as known
to those ordinarily skilled in the art capable of supporting the
operations described herein. The network 104 may utilize
different techniques and layers or stacks of protocols, includ-
ing, e.g., the Ethernet protocol, the internet protocol suite
(TCP/1P), the ATM (Asynchronous Transfer Mode) tech-
nique, the SONET (Synchronous Optical Networking) pro-
tocol, or the SDH (Synchronous Digital Hierarchy) protocol.
The TCP/IP internet protocol suite may include application
layer, transport layer, internet layer (including, e.g., IPv6), or
the link layer. The network 104 may be a type of a broadcast
network, a telecommunications network, a data communica-
tion network, or a computer network.

In some embodiments, the system may include multiple,
logically-grouped servers 106. In one of these embodiments,
the logical group of servers may be referred to as a server farm
38 or a machine farm 38. In another of these embodiments,
the servers 106 may be geographically dispersed. In other
embodiments, a machine farm 38 may be administered as a
single entity. In still other embodiments, the machine farm 38
includes a plurality of machine farms 38. The servers 106
within each machine farm 38 can be heterogeneous—one or
more of the servers 106 or machines 106 can operate accord-
ing to one type of operating system platform (e.g., WIN-
DOWS NT, manufactured by Microsoft Corp. of Redmond,
Wash.), while one or more of the other servers 106 can operate
on according to another type of operating system platform
(e.g., Unix, Linux, or Mac OS X).

In one embodiment, servers 106 in the machine farm 38
may be stored in high-density rack systems, along with asso-
ciated storage systems, and located in an enterprise data cen-
ter. In this embodiment, consolidating the servers 106 in this
way may improve system manageability, data security, the

20

25

40

45

50

55

6

physical security of the system, and system performance by
locating servers 106 and high performance storage systems
on localized high performance networks. Centralizing the
servers 106 and storage systems and coupling them with
advanced system management tools allows more efficient use
of server resources.

The servers 106 of each machine farm 38 do not need to be
physically proximate to another server 106 in the same
machine farm 38. Thus, the group of servers 106 logically
grouped as a machine farm 38 may be interconnected using a
wide-area network (WAN) connection or a metropolitan-area
network (MAN) connection. For example, a machine farm 38
may include servers 106 physically located in different con-
tinents or different regions of a continent, country, state, city,
campus, or room. Data transmission speeds between servers
106 in the machine farm 38 can be increased if the servers 106
are connected using a local-area network (LAN) connection
or some form of direct connection. Additionally, a heteroge-
neous machine farm 38 may include one or more servers 106
operating according to a type of operating system, while one
or more other servers 106 execute one or more types of
hypervisors rather than operating systems. In these embodi-
ments, hypervisors may be used to emulate virtual hardware,
partition physical hardware, virtualize physical hardware,
and execute virtual machines that provide access to comput-
ing environments, allowing multiple operating systems to run
concurrently on a host computer. Native hypervisors may run
directly on the host computer. Hypervisors may include
VMware ESX/ESXi, manufactured by VM Ware, Inc., of Palo
Alto, Calif.; the Xen hypervisor, an open source product
whose development is overseen by Citrix Systems, Inc.; the
HYPER-V hypervisors provided by Microsoft or others.
Hosted hypervisors may run within an operating system on a
second software level. Examples of hosted hypervisors may
include VMware Workstation and VIRTUALBOX.

Management of the machine farm 38 may be de-central-
ized. For example, one or more servers 106 may comprise
components, subsystems and modules to support one or more
management services for the machine farm 38. In one of these
embodiments, one or more servers 106 provide functionality
for management of dynamic data, including techniques for
handling failover, data replication, and increasing the robust-
ness of the machine farm 38. Each server 106 may commu-
nicate with a persistent store and, in some embodiments, with
a dynamic store.

Server 106 may be a file server, application server, web
server, proxy server, appliance, network appliance, gateway,
gateway server, virtualization server, deployment server, SSL.
VPN server, or firewall. In one embodiment, the server 106
may be referred to as a remote machine or a node. In another
embodiment, a plurality of nodes 290 may be in the path
between any two communicating servers.

The client 102 and server 106 may be deployed as and/or
executed on any type and form of computing device, e.g. a
computer, network device or appliance capable of communi-
cating on any type and form of network and performing the
operations described herein. In many embodiments, the client
102 may comprise an Apple IPHONE smart phone, an Apple
IPAD tablet computer, an Android operating system-based
smart phone or tablet such as a Samsung Galaxy Tab, or any
other such device including desktop computers, laptop com-
puters, tablet computers, smart phones, or other devices.
FIGS. 1B and 1C depict block diagrams of a computing
device 100 useful for practicing an embodiment of the client
102 or a server 106. As shown in FIGS. 1B and 1C, each
computing device 100 includes a central processing unit 121,
and a main memory unit 122. As shown in FIG. 1B. a com-

US 9,333,421 B2

7

puting device 100 may include a storage device 128, an instal-
lation device 116, a network interface 118, an I/O controller
123, display devices 124a-124n, a keyboard 126 and a point-
ing device 127, e.g. a mouse. The storage device 128 may
include, without limitation, an operating system, software,
and atoken match game or match game 120. As shown in FIG.
1C, each computing device 100 may also include additional
optional elements, e.g. a memory port 103, a bridge 170, one
or more input/output devices 130a-1307 (generally referred
to using reference numeral 130), and a cache memory 140 in
communication with the central processing unit 121.

The central processing unit 121 is any logic circuitry that
responds to and processes instructions fetched from the main
memory unit 122. In many embodiments, the central process-
ing unit 121 is provided by a microprocessor unit, e.g.: those
manufactured by Intel Corporation of Mountain View, Calif;
those manufactured by Motorola Corporation of Schaum-
burg, I11.; the ARM processor and TEGRA system on a chip
(SoC) manufactured by Nvidia of Santa Clara, Calif.; the
POWER?7 processor, those manufactured by International
Business Machines of White Plains, N.Y.; or those manufac-
tured by Advanced Micro Devices of Sunnyvale, Calif. The
computing device 100 may be based on any of these proces-
sors, or any other processor capable of operating as described
herein. The central processing unit 121 may utilize instruc-
tion level parallelism, thread level parallelism, different lev-
els of cache, and multi-core processors. A multi-core proces-
sor may include two or more processing units on a single
computing component. Examples of a multi-core processors
include the AMD PHENOM IIX2, INTEL CORE i5 and
INTEL CORE i7.

Main memory unit 122 may include one or more memory
chips capable of storing data and allowing any storage loca-
tion to be directly accessed by the microprocessor 121. Main
memory unit 122 may be volatile and faster than storage 128
memory. Main memory units 122 may be Dynamic random
access memory (DRAM) or any variants, including static
random access memory (SRAM), Burst SRAM or Synch-
Burst SRAM (BSRAM), Fast Page Mode DRAM (FPM
DRAM), Enhanced DRAM (EDRAM), Extended Data Out-
putRAM (EDO RAM), Extended Data Output DRAM (EDO
DRAM), Burst Extended Data Output DRAM (BEDO
DRAM), Single Data Rate Synchronous DRAM (SDR
SDRAM), Double Data Rate SDRAM (DDR SDRAM),
Direct Rambus DRAM (DRDRAM), or Extreme Data Rate
DRAM (XDR DRAM). In some embodiments, the main
memory 122 or the storage 128 may be non-volatile; e.g.,
non-volatile read access memory (NVRAM), flash memory
non-volatile static RAM (nvSRAM), Ferroelectric RAM (Fe-
RAM), Magnetoresistive RAM (MRAM), Phase-change
memory (PRAM), conductive-bridging RAM (CBRAM),
Silicon-Oxide-Nitride-Oxide-Silicon (SONOS), Resistive
RAM (RRAM), Racetrack, Nano-RAM (NRAM), or Milli-
pede memory. The main memory 122 may be based on any of
the above described memory chips, or any other available
memory chips capable of operating as described herein. In the
embodiment shown in FIG. 1B, the processor 121 communi-
cates with main memory 122 via a system bus 150 (described
in more detail below). FIG. 1C depicts an embodiment of a
computing device 100 in which the processor communicates
directly with main memory 122 via a memory port 103. For
example, in FIG. 1C the main memory 122 may be
DRDRAM.

FIG. 1C depicts an embodiment in which the main proces-
sor 121 communicates directly with cache memory 140 via a
secondary bus, sometimes referred to as a backside bus. In
other embodiments, the main processor 121 communicates

40

45

8

with cache memory 140 using the system bus 150. Cache
memory 140 typically has a faster response time than main
memory 122 and is typically provided by SRAM, BSRAM, or
EDRAM. Inthe embodiment shown in FIG. 1C, the processor
121 communicates with various 1/O devices 130 via a local
system bus 150. Various buses may be used to connect the
central processing unit 121 to any of the 1/O devices 130,
including a PCI bus, a PCI-X bus, or a PCI-Express bus, or a
NuBus. For embodiments in which the I/O device is a video
display 124, the processor 121 may use an Advanced Graph-
ics Port (AGP) to communicate with the display 124 or the [/O
controller 123 for the display 124. FIG. 1D depicts an
embodiment of a computer 100 in which the main processor
121 communicates directly with /O device 13056 or other
processors 121' via HYPERTRANSPORT, RAPIDIO, or
INFINIBAND communications technology. FIG. 1C also
depicts an embodiment in which local busses and direct com-
munication are mixed: the processor 121 communicates with
1/0 device 130q using a local interconnect bus while commu-
nicating with /O device 1305 directly.

A wide variety of /O devices 130a-1307 may be present in
the computing device 100. Input devices may include key-
boards, mice, trackpads, trackballs, touchpads, touch mice,
multi-touch touchpads and touch mice, microphones, multi-
array microphones, drawing tablets, cameras, single-lens
reflex camera (SLR), digital SLR (DSLR), CMOS sensors,
accelerometers, infrared optical sensors, pressure sensors,
magnetometer sensors, angular rate sensors, depth sensors,
proximity sensors, ambient light sensors, gyroscopic sensors,
or other sensors. Output devices may include video displays,
graphical displays, speakers, headphones, inkjet printers,
laser printers, and 3D printers.

Devices 130a-1307 may include a combination of multiple
input or output devices, including, e.g., Microsoft KINECT,
Nintendo Wiimote for the WII, Nintendo WII U GAMEPAD,
and may include discrete computing devices acting as an
input or output devices, such as an Apple IPHONE. Some
devices 130a-130# allow gesture recognition inputs through
combining some of the inputs and outputs. Some devices
130a-130#% provide for facial recognition which may be uti-
lized as an input for different purposes including authentica-
tion and other commands. Some devices 130a-130# provide
for voice recognition and inputs, including, e.g., Microsoft
KINECT, SIRI for IPHONE by Apple, Google Now or
Google Voice Search.

Additional devices 130a-130# have both input and output
capabilities, including, e.g., haptic feedback devices, touch-
screen displays, or multi-touch displays. Touchscreen, multi-
touch displays, touchpads, touch mice, or other touch sensing
devices may use different technologies to sense touch, includ-
ing, e.g., capacitive, surface capacitive, projected capacitive
touch (PCT), in-cell capacitive, resistive, infrared,
waveguide, dispersive signal touch (DST), in-cell optical,
surface acoustic wave (SAW), bending wave touch (BWT), or
force-based sensing technologies. Some multi-touch devices
may allow two or more contact points with the surface, allow-
ing advanced functionality including, e.g., pinch, spread,
rotate, scroll, or other gestures. Some touchscreen devices,
including, e.g., Microsoft PIXELSENSE or Multi-Touch
Collaboration Wall, may have larger surfaces, such as on a
table-top or on a wall, and may also interact with other elec-
tronic devices. Some I/O devices 130a-130n, display devices
124a-124n or group of devices may be augment reality
devices. The I/O devices may be controlled by an /O con-
troller 123 as shown in FIG. 1B. The I/O controller may
control one or more I/O devices, such as, e.g., a keyboard 126
and a pointing device 127, e.g., a mouse or optical pen.

US 9,333,421 B2

9

Furthermore, an I/O device may also provide storage and/or
an installation medium 116 for the computing device 100. In
still other embodiments, the computing device 100 may pro-
vide USB connections (not shown) to receive handheld USB
storage devices. In further embodiments, an /O device 130
may be a bridge between the system bus 150 and an external
communication bus, e.g. a USB bus, a SCSI bus, a FireWire
bus, an Ethernet bus, a Gigabit Ethernet bus, a Fibre Channel
bus, or a Thunderbolt bus.

In some embodiments, display devices 124a-124» may be
connected to 1/O controller 123. Display devices may include,
e.g., liquid crystal displays (LCD), thin film transistor LCD
(TFT-LCD), blue phase LCD, electronic papers (e-ink) dis-
plays, flexile displays, light emitting diode displays (LED),
digital light processing (DLP) displays, liquid crystal on sili-
con (LCOS) displays, organic light-emitting diode (OLED)
displays, active-matrix organic light-emitting diode
(AMOLED) displays, liquid crystal laser displays, time-mul-
tiplexed optical shutter (TMOS) displays, or 3D displays.
Examples of 3D displays may use, e.g. stereoscopy, polariza-
tion filters, active shutters, or autostereoscopy. Display
devices 124a-124n may also be a head-mounted display
(HMD). In some embodiments, display devices 124a-124# or
the corresponding [/O controllers 123 may be controlled
through or have hardware support for OPENGL or DIRECTX
API or other graphics libraries.

In some embodiments, the computing device 100 may
include or connect to multiple display devices 124a-124n,
which each may be of the same or different type and/or form.
As such, any of the /O devices 1304a-130% and/or the 1/O
controller 123 may include any type and/or form of suitable
hardware, software, or combination of hardware and software
to support, enable or provide for the connection and use of
multiple display devices 124a-124r by the computing device
100. For example, the computing device 100 may include any
type and/or form of video adapter, video card, driver, and/or
library to interface, communicate, connect or otherwise use
the display devices 124a-124n. In one embodiment, a video
adapter may include multiple connectors to interface to mul-
tiple display devices 124a-124#. In other embodiments, the
computing device 100 may include multiple video adapters,
with each video adapter connected to one or more of the
display devices 124a-124#n. In some embodiments, any por-
tion of the operating system of the computing device 100 may
be configured for using multiple displays 124a-124#. In other
embodiments, one or more of the display devices 124a-124n
may be provided by one or more other computing devices
100a or 1005 connected to the computing device 100, via the
network 104. In some embodiments software may be
designed and constructed to use another computer’s display
device as a second display device 124a for the computing
device 100. For example, in one embodiment, an Apple iPad
may connect to a computing device 100 and use the display of
the device 100 as an additional display screen that may be
used as an extended desktop. One ordinarily skilled in the art
will recognize and appreciate the various ways and embodi-
ments that a computing device 100 may be configured to have
multiple display devices 124a-124n.

Referring again to F1G. 1B, the computing device 100 may
comprise a storage device 128 (e.g. one or more hard disk
drives or redundant arrays of independent disks) for storing
an operating system or other related software, and for storing
application software programs such as any program related to
the token match game software 120. Examples of storage
device 128 include, e.g., hard disk drive (HDD); optical drive
including CD drive, DVD drive, or BLU-RAY drive; solid-
state drive (SSD); USB flash drive; or any other device suit-

10

15

20

25

30

35

40

45

50

55

60

65

10

able for storing data. Some storage devices may include mul-
tiple volatile and non-volatile memories, including, e.g., solid
state hybrid drives that combine hard disks with solid state
cache. Some storage devices 128 may be non-volatile,
mutable, or read-only. Some storage devices 128 may be
internal and connect to the computing device 100 via a bus
150. Other storage devices 128 may be external and connect
to the computing device 100 via a /O device 130 that pro-
vides an external bus. Still other storage devices 128 may
connect to the computing device 100 via the network inter-
face 118 over a network 104, including, e.g., the Remote Disk
for the MACBOOK AIR by Apple. Some client devices 100
may not require a non-volatile storage device 128 and may be
thin clients or zero clients 102. Some storage devices 128 may
also be used as a installation device 116, and may be suitable
for installing software and programs. In some implementa-
tions, the operating system and the software can be run from
a bootable medium, for example, a bootable CD, e.g. KNOP-
PIX, available as a GNU/Linux distribution from
knoppix.net.

Client device 100 may also install software or application
from an application distribution platform. Examples of appli-
cation distribution platforms include the App Store for i0S
provided by Apple, Inc., the Mac App Store provided by
Apple, Inc., GOOGLE PLAY for Android OS provided by
Google Inc., Chrome Webstore for CHROME OS provided
by Google Inc., and Amazon Appstore for Android OS and
KINDLE FIRE provided by Amazon.com, Inc. An applica-
tion distribution platform may facilitate installation of soft-
ware on a client device 102. An application distribution plat-
form may include a repository of applications on a server 106
or a cloud 108, which the clients 1024-1027 may access over
a network 104. An application distribution platform may
include application developed and provided by various devel-
opers. A user of a client device 102 may select, purchase
and/or download an application via the application distribu-
tion platform.

Furthermore, the computing device 100 may include a
network interface 118 to interface to the network 104 through
avariety of connections including, but not limited to, standard
telephone lines LAN or WAN links (e.g., 802.11, T1, T3,
Gigabit Ethernet, Infiniband), broadband connections (e.g.,
ISDN, Frame Relay, ATM, Gigabit Ethernet, Ethernet-over-
SONET, ADSL, VDSL, BPON, GPON, fiber optical includ-
ing FiOS), wireless connections, cellular connections, or
some combination of any or all of the above. Connections can
be established using a variety of communication protocols
(e.g., TCP/IP, Ethernet, ARCNET, SONET, SDH, Fiber Dis-
tributed Data Interface (FDDI), IEEE 802.11a/b/g/n/ac
CDMA, GSM, WiMax and direct asynchronous connec-
tions). In one embodiment, the computing device 100 com-
municates with other computing devices 100' via any type
and/or form of gateway or tunneling protocol e.g. Secure
Socket Layer (SSL) or Transport Layer Security (TLS), orthe
Citrix Gateway Protocol manufactured by Citrix Systems,
Inc. of Ft. Lauderdale, Fla. The network interface 118 may
comprise a built-in network adapter, network interface card,
PCMCIA network card, EXPRESSCARD network card, card
bus network adapter, wireless network adapter, USB network
adapter, modem or any other device suitable for interfacing
the computing device 100 to any type of network capable of
communication and performing the operations described
herein.

A computing device 100 of the sort depicted in FIGS. 1B
and 1C may operate under the control of an operating system,
which controls scheduling of tasks and access to system
resources. The computing device 100 can be running any

US 9,333,421 B2

11

operating system such as any of the versions of the
MICROSOFT WINDOWS operating systems, the different
releases of the Unix and Linux operating systems, any version
of the MAC OS for Macintosh computers, any embedded
operating system, any real-time operating system, any open
source operating system, any proprietary operating system,
any operating systems for mobile computing devices, or any
other operating system capable of running on the computing
device and performing the operations described herein. Typi-
cal operating systems include, but are not limited to: WIN-
DOWS 2000, WINDOWS Server 2012, WINDOWS CE,
WINDOWS Phone, WINDOWS XP, WINDOWS VISTA,
and WINDOWS 7, WINDOWS RT, and WINDOWS 8 all of
which are manufactured by Microsoft Corporation of Red-
mond, Wash.; MAC OS and i0S, manufactured by Apple, Inc.
of Cupertino, Calif.; and Linux, a freely-available operating
system, e.g. Linux Mint distribution (“distro”) or Ubuntu,
distributed by Canonical Ltd. of London, United Kingdom; or
Unix or other Unix-like derivative operating systems; and
Android, designed by Google, of Mountain View, Calif.,
among others. Some operating systems, including, e.g., the
CHROME OS by Google, may be used on zero clients or thin
clients, including, e.g., CHROMEBOOKS.

The computer system 100 can be any workstation, tele-
phone, desktop computer, laptop or notebook computer, net-
book, ULTRABOOK, tablet, server, handheld computer,
mobile telephone, smartphone or other portable telecommu-
nications device, media playing device, a gaming system,
mobile computing device, or any other type and/or form of
computing, telecommunications or media device that is
capable of communication. The computer system 100 has
sufficient processor power and memory capacity to perform
the operations described herein. In some embodiments, the
computing device 100 may have different processors, oper-
ating systems, and input devices consistent with the device.
The Samsung GALAXY smartphones, e.g., operate under the
control of Android operating system developed by Google,
Inc. GALAXY smartphones receive input via a touch inter-
face.

In some embodiments, the computing device 100 is a gam-
ing system. For example, the computer system 100 may com-
prise a PLAYSTATION 3, or PERSONAL PLAYSTATION
PORTABLE (PSP), ora PLAYSTATION VITA device manu-
factured by the Sony Corporation of Tokyo, Japan, a NIN-
TENDO DS, NINTENDO 3DS, NINTENDO WII, or a NIN-
TENDO WII U device manufactured by Nintendo Co., Ltd.,
of Kyoto, Japan, an XBOX 360 device manufactured by the
Microsoft Corporation of Redmond, Wash.

In some embodiments, the computing device 100 is a digi-
tal audio player such as the Apple IPOD, IPOD Touch, and
IPOD NANO lines of devices, manufactured by Apple Com-
puter of Cupertino, Calif. Some digital audio players may
have other functionality, including, e.g., a gaming system or
any functionality made available by an application from a
digital application distribution platform. For example, the
IPOD Touch may access the Apple App Store. In some
embodiments, the computing device 100 is a portable media
player or digital audio player supporting file formats includ-
ing, but not limited to, MP3, WAV, M4A/AAC, WMA Pro-
tected AAC, RIFF, Audible audiobook, Apple Lossless audio
file formats and .mov, .m4v, and .mp4MPEG-4 (H.264/
MPEG-4 AVC) video file formats.

In some embodiments, the computing device 100 is a tablet
e.g. the IPAD line of devices by Apple; GALAXY TAB
family of devices by Samsung; or KINDLE FIRE, by Ama-
zon.com, Inc. of Seattle, Wash. In other embodiments, the
computing device 100 is a eBook reader, e.g. the KINDLE

20

30

40

45

55

12

family of devices by Amazon.com, or NOOK family of
devices by Barnes & Noble, Inc. of New York City, N.Y.

In some embodiments, the communications device 102
includes a combination of devices, e.g. a smartphone com-
bined with a digital audio player or portable media player. For
example, one of these embodiments is a smartphone, e.g. the
IPHONE family of smartphones manufactured by Apple,
Inc.; a Samsung GALAXY family of smartphones manufac-
tured by Samsung, Inc; or a Motorola DROID family of
smartphones. In yet another embodiment, the communica-
tions device 102 is a laptop or desktop computer equipped
with a web browser and a microphone and speaker system,
e.g. a telephony headset. In these embodiments, the commu-
nications devices 102 are web-enabled and can receive and
initiate phone calls. In some embodiments, a laptop or desk-
top computer is also equipped with a webcam or other video
capture device that enables video chat and video call.

In some embodiments, the status of one or more machines
102, 106 in the network 104 is monitored, generally as part of
network management. In one of these embodiments, the sta-
tus of a machine may include an identification of load infor-
mation (e.g., the number of processes on the machine, CPU
and memory utilization), of port information (e.g., the num-
ber of available communication ports and the port addresses),
or of session status (e.g., the duration and type of processes,
and whether a process is active or idle). In another of these
embodiments, this information may be identified by a plural-
ity of metrics, and the plurality of metrics can be applied at
least in part towards decisions in load distribution, network
traffic management, and network failure recovery as well as
any aspects of operations of the present solution described
herein. Aspects of the operating environments and compo-
nents described above will become apparent in the context of
the systems and methods disclosed herein.

Referring now to FIG. 1D, illustrated is a block diagram of
an embodiment of a token match game 120. A token match
game 120 may comprise an application, applet, routine, game
engine, or other executable logic for providing an interactive
matching game to a player or user, and may be variously
referred to as a match game, token match game, game engine,
game, game application, application, or by any other such
term. In many embodiments, a token match game 120 may be
purchased, downloaded, and installed via an online applica-
tion store such as the Apple App Store or Google Play. In other
embodiments, a token match game 120 may be presented as a
web application in Flash, Java, HTMLS, or any other such
programming language. In some embodiments, a token
match game 120 may be programmed in a cross-platform
language, such as Unity by Unity Technologies of San Fran-
cisco, Calif., and may be available in several formats.

Inbrief overview, a token match game, sometimes referred
to as a match game or a slot-match game, may comprise a
game field or playing field 150, which may comprise two
arrays, discussed in more detail below. The match game 120
may also comprise a token generator 152 for generating or
selecting tokens to fill the two arrays. In some embodiments,
the match game 120 may comprise a spin counter 154 for
counting a number of spins or rounds available to a player,
and/or a bonus counter 156 for storing a score multiplier
value. In some embodiments, the match game 120 may com-
prise a rules engine 158 for identifying adjacent matching
tokens, wild card progressions, or board clearances. In some
embodiments, the match game 120 may include a score
counter 160 for keeping track of a player’s score, as well as a
score database 162 for retaining previous high scores. The
match game 120 may include a network agent 164 for com-
municating with social networking services or email for com-

US 9,333,421 B2

13

municating a player’s score or challenging other players; for
receiving regional or global high scores; or for receiving
game updates. In some embodiments, the match game may
include a challenge generator 166 for dynamically generating
a periodic challenge, such as a daily challenge, and/or may
receive challenge information via network agent 164. In other
embodiments, the match game may have one or more prede-
termined levels, which may be selected by a player. Levels
may vary in difficulty, based on different sizes or shapes of
boards; different numbers of spins or rounds of play allowed;
different score goals; different numbers of token types; the
presence or absence of tokens having special features or prop-
erties; or any other such feature.

Still referring to FIG. 1D and in more detail, in some
embodiments, a match game 120 may comprise a game field
150. Game field 150 may comprise an array, data table, data-
base, or other data format for identifying tokens in one or
more arrays of a game. Referring to FIGS. 2A-2D, illustrated
are diagrams illustrating successive steps of token selection,
replacement, and scoring in an embodiment of a token match
game 120. As shown, the game field 150 may comprise two
arrays, 202, 204. The first array 202 may be referred to as a
playing field, in-play field, or by similar terms, and may have
a dimension of Ixm In some embodiments, as shown, 1 and m
may be identical values and the array may be square, while in
other embodiments, the array may be rectangular. In some
embodiments, the match game 120 may have different modes
including “small boards” and “large boards” with corre-
spondingly different values of 1 and m, such as 6x7 for a
“small” board and 7x8 for a “large” board. Other values and
sizes may be used, as well as other relative descriptors,
including “tiny”, “normal”, “big”, “huge”, or any other value.
In some embodiments, a user or player may be able to specify
a size of one or both of 1 and m.

The second array 204 may be referred to as a “hand” or by
a similar term, and may have a dimension of 1xn. Each cell in
array 204 may correspond to a column or row of cells in first
array 202 (depending on orientation of the second array 204
to the first array 202). For example, in implementations using
the orientation shown, each cell in array 204 may correspond
to a column of cells in first array 202, such that a player may
swap any token in the column of first array 202 with the token
in the corresponding cell of second array 204.

As shown, each cell may include a token, which may be in
various shapes and/or colors 206a-206¢, referred to generally
as token(s) 206. In some embodiments, tokens 206 may be
referred to as “gems”, “coins”, “cards”, “icons”, “sprites”,
“items”, or any other such identifier. Although shown as poly-
hedrons, tokens 206 may also comprise playing cards of
different values such as jacks, queens, kings, and aces; alpha-
numeric icons; Greek letters or symbols; blocks of different
colors and/or patterns; icons of different types of candy,
foods, or animals; or any other type of distinct shapes, letters,
colors, symbols, portraits, devices, or icons.

Referring now to FIG. 2B, in play, a player may select a cell
208a of first array 202 (illustrated in bold line) to replace the
token 206 within said cell 208a with a token in a correspond-
ing cell 2085 of second array 204 (illustrated in bold line). As
discussed above, cell 2085 may correspond to any cell in the
corresponding column (or row, depending on orientation) of
first array 202. By replacing the token 206 in cell 208a with
the token 206 in cell 2085, the player may create a region 210
of'adjacent identical tokens 206 (illustrated in dashed line) as
shown in FIG. 2C. In some implementations, the player may
freely replace any token in a cell 2084, while in other imple-
mentations, the player may only replace a token in a cell 2084
if it results in creation of a region 210 of adjacent identical

20

25

30

35

40

45

55

14

tokens. In many implementations, the region 210 may have a
minimum size, such as three adjacent tokens, and the player
may not replace the token in cell 208a if it results in creation
of'a region 210 of less than the minimum size.

Although shown as a non-linear region 210, in some
embodiments or game play modes, the region 210 may be
constrained to a single line. For example, in one such embodi-
ment, a player may select a cell to replace with a token from
a corresponding cell in the second array 204 and create a line
of three adjacent or more tokens. These tokens may then be
removed. Lines may be vertical, horizontal, or, in some
embodiments, diagonal.

Once a region of adjacent identical tokens 210 has been
created, the tokens within the region 210 may be removed and
the player may receive a score. In some embodiments, the
player may receive a score of a predetermined value multi-
plied by the number of tokens within the region. For example,
given a value of 100 points, generating a region of five tokens
may result in a score of 500 points, while generating a region
of eight tokens may result in a score of 800 points. In other
embodiments, the player may receive a score of a predeter-
mined value raised to a power of the number of tokens within
the region, such as 2"n points. Other scoring values may be
used, such as bonuses for generating a region of seven tokens.
Once the tokens in region 210 are removed, resulting empty
cells in array 202 may be filled in. In some embodiments, as
shown in FIG. 2D, tokens in cells of positions above the
region 210 in the array 202 may be lowered to fill the empty
spaces (shown in dotted line as region 212). The resulting
empty spaces may thus beraised to the top ofthe array (region
214 in dotted line), and new tokens 206 may be selected
randomly to fill said empty spaces. This allows the player to
apply some strategy through removal of tokens in lower
spaces in the array to shift tokens in higher spaces into new
adjacent regions. In many embodiments, tokens in the array
may only be shifted in a single direction, e.g. downwards, as
shown in FIG. 2D. In other embodiments, described in more
detail below, tokens in the array may be shifted in two direc-
tions, e.g. downwards and sideways. As shown, in many
embodiments, cell 2085 in second array 204 may not be filled
in with a new token. In such embodiments, the player may be
required to utilize all tokens in their “hand” or array 204
before drawing a new “hand”.

In some embodiments, the region 210 may be removed
once per player selection. In other embodiments, after
removal and shifting of other tokens to fill empty spaces, if the
resulting configuration includes other regions of adjacent
tokens, these other regions may be removed. This may some-
times be referred to as a “combo” or combination move. Such
embodiments may thus allow for a series of successive
region-removal steps, which may be accompanied by higher
score multipliers or score values. For example, as discussed
above, in one embodiment or game play mode, regions 210
may be constrained to vertical, horizontal, and/or diagonal
lines. In one such embodiment, after a player selects a cell and
creates a line of three or more adjacent identical tokens, the
line may be removed, other tokens may be shifted to fill the
empty cells, and new tokens may be randomly selected to fill
cells at the edge of the first array. If the first array subse-
quently contains one or more lines of at least three adjacent
identical tokens, these lines may also be removed and the
player’s score incremented. This removal of lines or regions,
shift of tokens, and scanning of the array may be repeated
iteratively until no more lines or regions of at least three
adjacent identical tokens exist in the first array, at which point
regular play may continue.

US 9,333,421 B2

15

Returning now to FIG. 1D, the match game 120 may
include a token generator 152. As discussed above, tokens
206 may be randomly selected to fill in spaces in array 202,
204. Accordingly, token generator 152 may comprise a ran-
dom number generator or pseudo-random number generator,
and/or may calculate a modulus i of a generated random
number with i equal to the number of different tokens to select
one or more tokens to add to array 202 or 204 to fill empty
spaces. In some embodiments, the token generator 152 may
select tokens from a subset of the different tokens available.
For example, in one such embodiment, the token generator
152 may select tokens from a first subset for filling in array
202 (such as a base set of tokens), and may select tokens from
a second subset for filling in array 204 (such as the base set of
tokens, plus wildcards or wild gems, keys, or other special
tokens, discussed in more detail below). Accordingly, “ran-
domly selected” may refer to a selection of tokens via a
random or pseudo-random number generator, and/or may
refer to a selection of a first set of one or more tokens ran-
domly and a second set of one more tokens non-randomly. For
example, the token generator may select five tokens for an
array 204 randomly and select a special or wild token, dis-
cussed in more detail below, to be used as a sixth token in
array 204. In some embodiments, the token generator may
select all tokens for an array non-randomly, such as respon-
sive to a player- or rules engine-triggered event (e.g. aboost or
power, discussed in more detail below).

In some embodiments, the match game 120 may include a
spin counter 154. Spin counter 154 may comprise a counter
that is decremented (or incremented to eventually reach a
predetermined final value) with each “round” of play in which
the player draws a new “hand” to refill array 204. In some
embodiments, counter 154 may be referred to as a spin
counter because the mechanism for requesting or drawing a
new hand may comprise pulling a simulated lever of a slot
machine to “spin” the cells of array 204 to new values. In
other embodiments, counter 154 may be referred to as a
“round” counter, “life” counter, or any other such term. Spin
counter 154 may be set to an initial value that may be varied
responsive to difficulty ofthe game, time to play, or other such
features, and may be set automatically or by the player (or,
conversely, spin counter 154 may be set to an initial value of
0 or 1 and incremented to a final value set responsive to
difficult, time to play, or other such features).

In some embodiments, the match game 120 may include a
bonus counter or multiplier counter 156. In one such embodi-
ment, the bonus counter or multiplier counter may be incre-
mented each time the player successfully uses every token in
their “hand” or array 204 to generate adjacent regions 210 in
array 202. The counter 156 may be incremented, and array
204 may be refilled with randomly selected tokens, and the
value of counter 156 may be applied as a multiplier to the
score for each token removed. For example, if tokens are
normally worth 100 points such that matching a region of four
adjacent tokens is 400 points, if the player successfully plays
every token in array 204, the counter 156 may be incremented
to “2” and a new hand drawn. If the player subsequently
matches a region of four adjacent tokens, the player may
receive a score of 800 points.

In many embodiments, the value of counter 156 may be
reset if the player cannot match any tokens in array 204 and
draws a new hand. In a further embodiment, the base value of
counter 156 may be permanently increased (for the duration
of'a game) by matching special tokens or completing a level,
discussed in more detail below. If the player subsequently
draws a new hand, the counter 156 may be reset to the per-
manently increased base value. For example, in one such

20

40

45

16

embodiment, the player may use all tokens in array 204 and
increase the counter 156 to “2”. The player may then com-
plete the level or match a special token and increase the
counter to “3” and permanently increment the base value to
“2”. The player may then use all of the tokens in array 204
again, and increase counter 156 to “4”. If the player then
draws a new hand, the counter may be reset to the increased
value of “2”. Although discussed in terms of a counter and
base value, in many embodiments, counter 156 may comprise
two counters, with a first counter incremented for each hand
or level completed; the second counter incremented for each
level completed; and the first counter reset to the value of the
second counter upon drawing a new hand.

In another embodiment or game play mode, referred to as
a “blitz” mode, the match game 120 may comprise a play
timer (not illustrated) of a predetermined number of seconds,
such as 30, 60, 120 seconds or any other value. Upon expira-
tion of the play timer, the game may end and/or proceed to a
bonus spin, discussed in more detail below. This may provide
for short, intense or exciting game play. In one embodiment,
the play timer may be incremented by a number of seconds if
the player successfully uses every token in array 204 as dis-
cussed above. For example, in one such embodiment, if the
player utilizes every token in their hand, the play timer may be
incremented by 10 seconds.

In some embodiments, a match game 120 may comprise a
rules engine 158 for identifying matching adjacent tokens in
aregion 210 of array 202 and/or determining if a token should
be removed or replaced. In some embodiments of a match
game 120, if a player creates a region 210 of adjacent match-
ing tokens of less than a predetermined size by replacing a
selected token in array 202 with a second token from array
204, the second token (along with other tokens in region 210)
may be removed from array 202 and the empty spaces filled in
as discussed above. In a further embodiment, if the player
creates a region 210 of adjacent matching tokens of equal to
or greater than the predetermined size, the match game 120
may replace the second token with a special token, which may
have a distinctive appearance, such as a diamond gem, flash-
ing pattern, or other identifier. Other tokens in region 210 may
be removed, and spaces in array 202 filled in as discussed
above, leaving the special token in place. Play may then
continue. If, subsequently, the player creates a region 210 of
adjacent matching special tokens, in some embodiments, the
selected token may be replaced by a second special token,
which may have another distinctive appearance, such as a key
or other identifier. Play may then continue again. If, subse-
quently, the player creates a region 210 of adjacent matching
second special tokens, in some embodiments, the level may
be completed. Completing the level may result in removal of
all tokens in array 202 (frequently with the player receiving a
score for each token, which may be increased with a multi-
plier as discussed above with bonus counter 156), and a new
set of tokens selected to fill array 202. In some embodiments,
the game engine may increment the spin counter upon com-
pleting the level, resulting in an ‘extra life’ or extra round for
the player.

For example, in one embodiment, a player may match 7
“regular” token in a first region 210 and receive a diamond
gem in place of the selected token. The player may match
another 7 regular tokens in a second region 210' (conveniently
next to or nearby region 210 in this example) and receive a
second diamond gem (correspondingly next to or near the first
diamond gem). The player may then create a third region 210"
with the diamond gems (either via a diamond gem in array
204 or awildcard token which may be used to match any other
tokens, discussed in more detail below), and receive a golden

US 9,333,421 B2

17

key in place of the selected token. Upon creating a region of
adjacent matching golden keys (again, via a key in array 204
or wildcard token), the game may clear and refill array 202
with the player receiving points for each cleared token. In
many embodiments, the score value for each diamond gem,
key, or other special token may be higher than the score value
for each regular or base token.

Match game 120 may include a score counter 160. Score
counter 160 may be a counter or string incremented to keep
track of a player score during play. In many embodiments, the
resulting score may be saved to a score database 162, which
may comprise a list of previous scores or a predetermined
number of the highest scores (i.e. a high score list). In some
embodiments, score database 162 may store a plurality of
lists, including lists of high scores in specific game configu-
rations (e.g. “large board” or “normal board”), global or
regional high score lists received from a server, daily or
weekly high score lists, or other such lists.

In some embodiments, a player’s score may be shared with
other players or friends via social networking services such as
Facebook or Twitter, emailed to other players or friends, or
communicated to a server for inclusion in global or regional
high score lists via a network agent 164. Network agent 164
may comprise an application, service, daemon, routine, API,
or other executable logic for communicating with a server via
a network, and may be provided by the operating system of
the device. Network agent 164 may transmit and receive
information including scores, game configurations, player
identifiers, challenges, or other such information.

In some embodiments, a match game 120 may include a
challenge generator 166, and/or may receive challenges via a
network agent 164 from a server or from other computing
devices. A challenge may comprise a game configuration,
including a board size, predetermined region size to generate
a special token, number of rounds or spins, and a target score
for the player to meet or exceed. Challenges may be generated
daily, hourly, weekly, or at any other such interval. Challenge
generator 166 may comprise an application, service, daemon,
routine, or other executable logic, and may be executed by the
player’s computing device, by a server, or by another player’s
device. In the latter two implementations, challenges may be
transmitted and received via network agent 164, allowing a
player to participate in a global or regional challenge, or
allowing a player to challenge friends. In some embodiments,
a player may manually create a challenge by specifying the
game configuration, while in other embodiments, the chal-
lenge generator 166 may dynamically generate the game
configuration according to one or more rules. In one such
embodiment, each configuration variable may have an asso-
ciated score and/or difficulty value, and the target score may
be calculated responsive to each configuration variable. For
example, the challenge generator 166 may randomly select a
board size or size for array 204 and/or 202 from a predeter-
mined plurality of board sizes, each having an associated
value (e.g. 7x6 array=1, 8x7 array=1.2, etc.); may randomly
select a number of base tokens, with a corresponding value
(e.g. 5 tokens=1, 6 tokens=0.8, 7 tokens=0.6, etc.); may ran-
domly select a predetermined region size to generate a special
token (e.g. region size 6=1, region size 7=0.5, region size
8=0.2, etc.); and may randomly select a number of spins with
an associated value (e.g. 10 spins=1, 15 spins=2, 20 spins=3,
etc.). The challenge generator 166 may then calculate a target
score as a base score multiplied by each value associated with
a variable. For example, and using the exemplary values
above and a base score of 100,000, given a challenge of an
8x7 array with 6 tokens, region size 7, and 15 spins, the target
score may be 120,000. The associated values for each variable

20

40

45

50

18

may be set responsive to the corresponding difficulty associ-
ated with each variable: more spins may be easier, resulting in
a higher target score; a greater variety of tokens may be more
difficult to match, resulting in a lower target score. Accord-
ingly, although the challenges may differ wildly in board size,
number of spins, types of tokens, game play parameters, and
target score, each challenge may be roughly equal in difficulty
for the player. One of skill in the art may readily appreciate
that the exemplary values above are presented for descriptive
purposes only, and as such, are selected to make the exem-
plary mathematics easy. In practice, the values associated
with each variable may be much different, and may be set by
the developer responsive to play testing for consistent diffi-
culty through successive challenges. In a similar embodi-
ment, rather than using multipliers, specific score values may
beused (e.g. utilizing 5 tokens adds 300,000 to the base score,
while utilizing 6 tokens adds 200,000 to the base score, etc.).
In other embodiments, the match game may include a series
of'predetermined levels with different features, such as board
size, number of spins, types of tokens, target scores, game
play parameters, etc. In some such embodiments, the player
may be required to complete one or more levels (through one
or more attempts) before allowing to progress to a successive
level or series of levels.

Referring now to FIG. 3, illustrated is a flow chart of an
embodiment of a method 300 for executing a token match
game. At step 302, the game engine may generate and fill an
mx] array or playing field with randomly selected tokens. The
values of m and 1 may be set automatically to a default, may
be set by the player when configuring a custom game, may be
selected by the player from a plurality of predetermined
defaults or game types, or may be set by a challenge engine as
discussed above. Similarly, the tokens may be randomly
selected from a list of possible tokens, or may be randomly
selected from a subset of this list, such as a subset including
base tokens and not including wildcard tokens or special
tokens. In an initial iteration of method 300, the mx]1 array
may be empty and may be completely filled by selecting
random tokens. In later iterations during game play, the game
engine may fill empty cells in the array at step 302 with
randomly selected tokens. Filling empty cells may, in many
embodiments, comprise shifting tokens in cells adjacent to
empty cells into the empty cells, and repeating this shifting
until the empty cells are at an edge of the array, at which point
they may be filled with randomly selected tokens. Although
discussed as starting at step 302, in some embodiments,
method 300 may begin at another point, such as step 310, step
312, or step 314, discussed below.

At step 304, in some embodiments, the game engine may
determine if any matches are possible with tokens in a second
nxl array or hand. Determining if a match is possible may
comprise scanning each row or column of the mxl array
iteratively to identify whether a region of identical adjacent
tokens of a predetermined size may be created if a token in a
cell in the row or column is replaced with a token in a corre-
sponding cell of the nx1 array. As discussed above, a row or
column may be scanned responsive to orientation of the nxl
array to the mxl array. The predetermined size of the region
may be a default value or may be set according to difficulty, a
custom setting, a challenge, or any other such method as
discussed above. In an initial iteration of method 300, the nx1
array may be empty, so accordingly no match is possible.
Thus, in some implementations, step 304 may be skipped
during an initial iteration and the method may proceed
directly to step 310, step 312, or step 314 discussed below. In
later iterations, step 304 may be used to determine if the
player has any moves available.

US 9,333,421 B2

19

If no match is possible at step 304, then at step 306, the
game engine determines whether the player has any more
spins or rounds of play remaining. As discussed above, the
game engine may maintain a spin counter which may be
decremented (or conversely, incremented towards a final
value) with each spin or round and fill of the nx] array. In an
initial play of the game, step 306 may be skipped, as the
player will have at least one spin or round remaining.

If'the player has no more spins or rounds remaining, then at
step 308 in some implementations, the game engine may
provide abonus wheel. A bonus wheel may comprise a wheel,
spinner, or other random selection element for providing a
player with a random bonus or, in some embodiments, a
random penalty. Although referred to as a wheel, in many
implementations, other interfaces may be presented, includ-
ing face down cards with random bonuses and/or penalties to
be selected by the player, slot machine-type windows, icons,
or any other such interface. In some embodiments, the player
may be presented with an option to spin the wheel or other
interface to attempt to receive a random bonus or penalty, or
may opt out and end the game. This may be used in instances
where the player may wish to avoid a potential penalty.
Bonuses may include score increases by a value and/or per-
centage, fortunes, and/or one or more additional spins or
rounds of play. Penalties may include score decreases by a
value and/or a percentage, curses, or other penalties. If the
player receives additional spins or rounds, then the method
may resume with step 310.

Atstep 310, if the player has more spins or rounds remain-
ing, then in some embodiments, the game engine may present
a spin button or lever. In one implementation, the spin lever
may be presented as a slot machine-style or “one-armed ban-
dit” lever. In other implementations, the game engine may
present a button, switch, slide, or any other interface element.
In one embodiment during an initial iteration of method 300,
step 310 may be skipped and the first hand may be automati-
cally drawn for the player.

At step 312, responsive to the player activating the spin
lever or otherwise requesting a new hand (or automatically in
implementations in which step 310 is skipped), the spin
counter may be decremented (or incremented in embodi-
ments in which the counter counts up to a terminal value). At
step 314, the game engine may fill the nx1 array with tokens.
In one embodiment, the tokens may be randomly selected
from the entire list of tokens, including wildcards and/or
special tokens, while in another embodiment, the token may
be randomly selected from a subset of the tokens. In some
embodiments, the subset of the tokens may comprise tokens
currently in play in the mx] array, and may further include a
wildcard token. For example, in one such embodiment, if the
mx] array includes only base tokens and no special tokens, the
subset may include only the base tokens and wildcard tokens.
If the mxlI array includes a special token, such as a diamond
gem, the special token may be added to the subset. This
enables a player to create regions of adjacent special tokens,
but avoids including the special tokens if others are not cur-
rently in play, to avoid frustrating the player with unplayable
tokens. After step 314, in some embodiments of method 300,
the game engine may repeat step 302. In a first iteration of
method 300, this may be unnecessary, as the game engine
may have already filled the mx] array, and accordingly, in
some embodiments, step 302 may be skipped. In other
embodiments of method 300, method 300 may begin at
another point, such as step 310, step 312, or step 314, and step
302 may be performed.

Step 304 may be repeated as shown to determine if a region
of'adjacent identical tokens may be generated in the mx1 array

25

40

45

65

20

by replacing a token with a corresponding token of the nxl
array. If not, then steps 306-314 may be repeated. If so, then
atstep 316, the game engine may wait for and receive a player
selection of a cell within the mx] array, referred to as cell m,,
1,. Player selection of the cell may be via a touchscreen, such
as touching the cell, or may be via a cursor or mouse click, text
entry, gesture, or other input method.

At step 318, the game engine may determine if replacing
the token in cell at m,, 1, with a token in the corresponding cell
n,, 1; of the nxl array may result in a region of adjacent
identical tokens of at least a predetermined size. In many
embodiments, the size of n may be 1, such that the value i may
be ignored. In other embodiments, the size of n may be equal
to m with a token in the nxl array corresponding to every
token in the mx] array. In still other embodiments, n may be a
factor of m such that each token in the nxl array may corre-
spond to some, but not all tokens in the corresponding row or
column of the mx] array. For example, m may be 6 and n may
be 2, with n, corresponding to m,_; and n, corresponding to
m, .. As such, one may readily appreciate that the corre-
sponding cell n,, 1, may have a different value of 1 in some
embodiments. The game engine may use any method to iden-
tify and determine the size of potential regions of identical
tokens, including flood-fill algorithms, filling a second mxl1
array with the n;, |, token and calculating a conjunction of the
arrays, performing a breadth-first or depth-first search for
identical tokens around the selected cell m,, 1, or any other
method. In some embodiments in which the token incelln,, 1,
is a wildcard token, the game engine may use a variable in the
search methods or otherwise allow the wildcard token to
match any other token in array mxl.

If the game engine does not determine that a match or
region will be generated, then at step 320, the game may
indicate that the selection is invalid. This may include flash-
ing an interface element, outputting a sound, showing a pop-
up message, or any other indicator. In some embodiments, if
cell n,, 1, is empty (such as if the token in that cell has already
been used), then the game engine may skip step 318 and go
directly to step 320.

In some embodiments, if the player has not made a valid
selection within a predetermined time period, the game
engine may display a hint or indicate a potentially valid
selection within the mxlI array, such as arrows or a flashing
border around a cell or any other such indication.

If the game engine determines that a region will be gener-
ated if the token in cell n,, 1, is placed in the selected cell, then
at step 322, the replacement may be performed. The game
engine may identify the created region of adjacent identical
tokens and may remove the tokens and increment the player’s
score accordingly, as discussed above. In some embodiments,
if the region is greater than a predetermined size, the game
engine may place a special token, such as a diamond gem, in
the cell m,, 1; after removing the tokens. In another embodi-
ment, if the matched tokens are the special token, the game
engine may place a second special token, such as a wildcard
token, in the cell m,, |, after removing the tokens. In a further
embodiment, if the player subsequently selects and generates
aregion of adjacent identical tokens of a first type (e.g. a base
token) that includes or is adjacent to the second special token,
the game engine may remove all of the tokens of the first type
in the mxl array, regardless of position, and increment the
player’s score accordingly. The game engine may then place
a third special token, such as a golden key, in the cell m,, |,
after removing the tokens. In another embodiment, if the
player subsequently selects and generates a region of adjacent
identical tokens of the third special token type, the game
engine may clear the mxl array, incrementing the player’s

US 9,333,421 B2

21

score for each token removed, and skip to step 326, discussed
below. This may be referred to as finishing the level or gaining
alevel, and a bonus counter (and/or permanent bonus counter
or base level for the counter) may be incremented, as dis-
cussed above.

Atstep 324, the game engine may determine if the nxl array
or player’s hand is empty. If not, then method 300 may con-
tinue with step 302, filling in any empty spaces in the mxl
array resulting from the removal of tokens at step 322 as
discussed above. If so, at step 326, then the game engine may
increment a bonus counter as discussed above and may repeat
step 314 before continuing with step 302. This may be
referred to as finishing a hand.

As shown, method 300 may be iteratively repeated with the
player playing tokens from his or her hand in the playing field
to generate matches and special tokens, and/or failing to
match tokens and requesting a spin or new hand, until the
player runs out of spins or rounds, optionally spinning the
bonus wheel at step 308.

As discussed above, in some game play modes or embodi-
ments, sometimes referred to as “blitz” mode, the game
engine may execute a play timer of a predetermined duration.
If the play timer expires, play may end and the game engine
may proceed to step 308. In some embodiments, if the player
utilizes every token in the nxl array, then at step 326, the play
timer may be incremented by a predetermined amount of
time, such as 5 seconds, 10 seconds, 15 seconds, or any other
value, to provide an extended period for play. In other
embodiments, the game may end upon completion of a pre-
determined goal, such as a number of tokens matched, a score
reached, or any other such feature. In one such embodiment,
upon completion of a level, a bonus score may be awarded to
the player. In a further such embodiment, the game engine
may fill the nxl array with one or more “wild” tokens which
may be used to match any other tokens at step 318. In a still
further such embodiment, the game engine may automati-
cally play through iterations of method 300 with the wild
tokens until the nx! array is empty, skipping from step 324 to
step 308 and/or a game end screen. Such embodiments may
be referred to as having a jackpot or bonus round.

Referring now to FIGS. 4A-9C, illustrated are screenshots
of one example embodiment of a token match game. The
screenshots are intended for explanatory purposes only, and
are not intended to be limiting. Referring first to FIGS. 4A-47,
illustrated are screenshots of menu, help, and configuration
screens of an embodiment of a token match game. As shown
in FIG. 4A, a menu screen may include a high score board and
buttons for starting a game, configuring settings, viewing
medals, interacting with a social network, viewing a help
screen, or logging in or registering as a player. As shown in
FIG. 4B, various options may be set by the player, including
whether hints are displayed after a predetermined time period
of'no player selection of a valid cell, and volume settings. As
shown in FIGS. 4C and 4D, various awards may be awarded
to the player for fulfilling one or more conditions, such as
scoring a predetermined number of points in a game or play-
ing a number of games. In one embodiment, unachieved
awards may be shown with a lock symbol or other indicator.
As shown in FIG. 4E, the player may share scores and/or
challenge others via one or more social networks or messag-
ing methods, or may copy the last game’s final score to paste
into another application.

FIGS. 4F and 4G illustrate screens of an exemplary help
display. As shown in FIG. 4F, the help display may be shown
as a bubble or overlay on the menu or another screen. FIG. 4G
illustrates a sequence of exemplary help screens.

10

15

20

25

30

35

40

45

50

55

60

65

22

In some embodiments, the player may select a button to
view player statistics and/or change the player’s identified
name or reset the statistics, as shown in FIG. 4H and in the
sign-in dialog of FIG. 41.

As shown in FIG. 4], the player may be presented with a
challenge that may be dynamically generated by a challenge
engine of the game, may be received as a challenge from a
friend or another player, or may bereceived from a server. The
challenge may identify a target score and one or more param-
eters, as shown.

FIGS. 5A-5C are screenshots of a sequence of an example
embodiment of successive steps of token selection, replace-
ment, and scoring in an embodiment of a token match game.
As shown in FIG. 5A, a spin lever may be presented to the
player, and the player may pull or trigger the lever to fill the
cells of the nx1 array (i.e. the row of six empty cells in FIG.
5A) with randomly selected tokens as shown in FIG. 5B. The
tokens may be selected from a subset of tokens including the
tokens in the mx! array, and may include a wildcard token as
shown in the rightmost cell of the nx1 array.

If the player selects the triangular token in the 5th column
in the mxl array, the game engine may replace the token with
the diamond-shaped token (not to be confused with a special
token, an example of which is shown in FIG. 6A in the 4th
column of the mx1 array) in the corresponding column of the
nxl array to generate a region of six adjacent matching dia-
mond-shaped tokens. As shown in the screenshot of FIG. 5C,
these tokens may be removed and the player’s score incre-
mented and the mx] array may be filled by moving down
tokens from higher rows in the array and selecting new ran-
dom tokens to fill the resulting empty cells.

FIGS. 6 A-6C are screenshots illustrating successive steps
ofutilization of a wildcard within a created region of identical
tokens in an embodiment of a token match game. As shown,
in some embodiments, the mx] array may include special
tokens, such as the diamond in the 4th column, or the “Spe-
cial” or wildcard token in the 2nd column (marked with an
“S™). If the player selects the first column, second row hex-
agonal token in the mx] array, a region may be created of the
pentagonal tokens that includes the “Special” token. As
shown in FIG. 6B, the game engine may remove all of the
pentagonal tokens and replace the first column, second row
token with a third special token or golden key. The mxl array
may then be filled, as shown in FIG. 6C. In some implemen-
tations, the wildcard token may be referred to as a “splash” or
wild token, and may have various types of effects. For
example, in one implementation, creating or matching a
region that includes the wild token may result in removal of
all of the gems matching the tokens in the region, regardless
of their position in the mxl array, as discussed above. In
another implementation, creating or matching a region that
includes the wild token may result in removal of all tokens in
the mx! array in a horizontal or vertical line with the wild
token. Such wild tokens may be referred to as “horizontal
splash” and “vertical splash” tokens, respectively. In yet
another implementation, creating or matching a region that
includes the wild token may result in removal of all tokens in
the mxl array adjacent to the wild token (i.e. any tokens
above, below, to the side of, or diagonally adjacent to, the wild
token). Such wild tokens may be referred to as “area splash”
tokens.

In some implementations, wild tokens and/or splash tokens
may be selected by the token generator and/or rules engine
responsive to the player matching a region of predetermined
size. For example, in one implementation, if the player
replaces a token in the mxI array to create a region ofidentical
tokens including seven tokens, after removing the tokens in

US 9,333,421 B2

23

the region, the rules engine may place a wild token at the cell
selected by the user. This may encourage the player to stra-
tegically plan and create larger regions during game play. In
other implementations, wild tokens and/or splash tokens may
be selected by the token generator during filling of the mxl1
array.

FIGS. 7A-7C are screenshots illustrating successive steps
of matching tokens to clear a board in an embodiment of a
token match game. As shown, the mxl array may include two
or more of the third special token or golden key. The player
may play a wildcard token (second column in the nx1 array) in
the cell between the two special tokens in the mx] array as
shown in FIG. 7B. The game engine may remove all of the
tokens in the mxl1 array and increment the player’s score. The
screenshot captures an intermediate step in the animation of
this process, with only some of the scores displayed filling in
from left to right. In other embodiments, the scores may be
displayed all at once, or fill in from a different direction. As
shown, in many embodiments, the player may receive a
higher score for clearing a special token than for clearing a
regular or “base” token. As shown in FIG. 7C, the mxl array
may then be filled in with new randomly selected tokens.

FIGS. 8A-8K are screenshots of help screens of an embodi-
ment of a token match game. As shown, the help screens may
be displayed as a bubble or pop-up over the playing field. As
discussed above, in some embodiments, after the player runs
out of spins, rounds, or lives, a bonus wheel or similar inter-
face may be presented to the user with bonuses and/or pen-
alties. FIGS. 9A-9C are successive screenshots of a bonus
wheel of an embodiment of a token match game. As shown,
the player may choose to spin the wheel and receive a random
bonus or penalty, which may include additional spins or
rounds of play, returning to gameplay (in this instance, a
“spin” refers not to the bonus wheel, but to receiving new
tokens for the nx! array).

FIGS. 10A and 10B are screenshots of embodiments of
screens presented upon completion of a token match game.
As shown in FIG. 10A, the player’s score may be shown and
the player may be given an option to play again, share the
score, challenge a friend, or return to the menu. Additionally
as shown in FIG. 10A, if the player was participating in a
challenge, a target score or goal may be displayed, along with
an indication of whether the player achieved the goal. As
shown in FIG. 10B, if the player met a condition for an award,
the award may be displayed to the player.

FIGS. 11A and 11B are screenshots of embodiments of a
level selection screen for a token match game. As discussed
above, in some embodiments, rather than utilizing a timer-
based or challenge-based game, the game may comprise a
series of levels to be completed by the player as a “quest”. In
some implementations, a level selection screen may be pro-
vided to the player, allowing the player to select a next
uncompleted level or select any previously completed level to
replay, for example, to attempt to increase a score over a
previous attempt at said level. As shown in FIG. 11A, a level
selection screen 1100 may comprise one or more identifiers
11084-1108d of levels (referred to generally as level identi-
fier(s) 1108). Although shown as icons on a trail, in many
implementations, level identifiers 108 may be displayed in a
scrollable list, a tree, a chain, or any other such structure. As
shown in FIG. 11D, the level selection screen 1100' may
include a greater number of level identifiers (e.g. 1108e-
1108i), or a fewer number of level identifiers, depending on
spacing of the identifiers or other such design considerations.
In some implementations as shown in FIG. 11B, previously
completed levels may be shown with a score or completion
indicator, such as a number of stars as shown. For example, in

20

25

30

35

40

45

24

one such implementation, a level may have a series of goals,
such as scoring 100,000 points, scoring 300,000 points, and
scoring 500,000 points. The player may be awarded with a
star for each goal attained, which may then be displayed in the
level selection screen 1100 as shown.

Level selection screen 1100 may include one or more scroll
buttons 1110a-11105, scroll bars (not illustrated), or other
user interface elements to allow the user to view and select
level identifiers 1108, including those not immediately vis-
ible on a level selection screen. In other embodiments, the
user may be able to scroll the level selection screen via a
keyboard, mouse, or gesture on a touch-based input device.

A level selection screen 1100 may include a life or attempt
meter 1102, which, in many embodiments, may display a
counter of remaining attempts. In some embodiments, a
player may be provided with a limited number of attempts to
complete levels or challenges. Each time the player fails to
complete the challenge or level, the attempt meter may be
decremented. Upon the attempt meter reaching 0, in some
embodiments, the player may be prevented from playing a
round of the game, until either a predetermined time period
has passed, additional attempts are purchased, additional
attempts are gifted by another player (e.g. via a social net-
working interface), or any other such limitations or other
tasks are performed. For example, in one implementation, a
new attempt or set of attempts may be granted every 15
minutes. If the player has utilized all of the allotted attempts
prior to the expiration of the time period, the player may be
provided an opportunity to purchase one or more attempts via
an in-application purchase system or purchase system via a
web page or other interface. Players may also purchase and
gift attempts to others, and/or beg or request others for
attempts to be gifted.

A level selection screen 1100 may include a settings icon
1104. Settings icon 1104 may be selected by a player to
access a settings screen, which may provide volume controls
for sound effects or music, brightness controls, access to or
editing of a social network profile, or any other such features.
In some embodiments, a level selection screen 1100 may
include a menu button 1106 for return to an initial screen. The
initial screen may allow access to different game types, such
as a quest, blitz, or challenge mode, as discussed above, or
other features.

FIG.12A is a screenshot 1200 of an embodiment of a level
in a token match game incorporating tokens of different types
orclasses in an mx] array 1202 and nxl array 1204. As shown,
tokens may include a standard token 1206, such as a jewel or
other geometric shape, icon or picture such as a type of candy
or animal, or any other such token. Tokens may also include
one or more “breakable” token types, such as a crate or
wooden token 1208, a cage or jail token 1210, and/or a stone
token 1212. In some implementations, a “breakable” token
may not be matched by a token in the nx1 array 1204; instead,
the token may be “broken” (e.g. removed or otherwise
adjusted) responsive to matching and removal of a region
adjacent to the token. For example, in one such implementa-
tion, if a series of tokens adjacent to a wooden token 1208 are
removed, the wooden token 1208 may also be removed. The
cell previously containing the wooden token 1208 may be
filled normally, as discussed above. In a similar implementa-
tion, a series of regions adjacent to a breakable token may
need to be matched and removed before the breakable token
is removed. For example, while a wooden token 1208 may be
removed after matching of a single adjacent region, a stone
token 1210 may require matching of two or more adjacent
regions in succession. In some implementations, after each
intermediate match before removal, the token 1210 may be

US 9,333,421 B2

25

displayed in an altered form, such as with cracks or shading to
indicate that the token 1210 has been partially matched or will
be removed on a subsequent match.

In another similar implementation, if a series of tokens
adjacent to a jail token 1212 are matched and removed, the jail
token 1210 may be replaced with a standard token 1206
corresponding to the token displayed within the jail token
1212. In other implementations, the standard token displayed
within the jail token 1210 may be considered part of the
region for purposes of matching. For example, if the game
rules require matching at least three tokens in a region, the
token displayed within the jail token 1212 may be considered
to count as one of the three tokens; however, upon matching
and removal of the tokens in said region, the jail token 1212
may be replaced with the standard token corresponding to the
token displayed within the jail token 1212. In another
embodiment not illustrated, tokens similar to jail token 1212
may be implemented. For example, an ice token may display
a standard token 1206 behind a layer of ice which must be
broken, e.g. by matching an adjacent region one or more
times. In another embodiment, a vine token may display a
standard token 1206 behind a layer of vines or other growth.
In a further embodiment, the vine token may “spread” over
time: upon expiration of a predetermined amount of time or
after one or more matches or selections by a player, one or
more tokens adjacent to a vine token may be replaced with a
vine token including the corresponding standard token. The
player may be encouraged to play quickly to remove all of the
vine tokens in the mxl array 1202 to prevent their further
spread.

As shown in FIG. 12A, in some implementations, a token
match game may display a goal 1214 to be met to complete a
level. For example, the goal may include a predetermined
score to reach, a number of tokens to match, or any other such
goal. In one implementation, the goal may display a number
of squares in which tokens must be matched and/or removed.
In many embodiments, the goal 1214 may be decremented or
reduced as the player partially achieves the goal. In such
embodiments, the goal 1214 may be referred to as a remain-
ing goal, or by a similar term.

In many embodiments, the token match game may also
display a score 1216 and/or number of spins or rounds
remaining 1218. In some embodiments, as discussed above in
which a level has a series of goals to be attained, the interme-
diate goals may be displayed under the score 1216. For
example, the goals may comprise different scores for the
player to reach, and be displayed as a series of stars on a
progress bar.

In some implementations, the token match game may
include one or more powers 1220 that may be selected for use
by the player. Powers 1220, discussed in more detail below,
may provide the player with additional spins or rounds 1218,
wild tokens to match any token in the mx1 array 1202, the
ability to move tokens within nxl array 1204, or any other
such functionality.

FIG. 12B illustrates another screenshot 1200' of an
embodiment of a level of a token match game. In addition to
standard tokens, and wooden tokens 1208, in some embodi-
ments, a match game may include other types of breakable
tokens 1222 such as a boulder token. In some embodiments,
aboulder token 1222 may be similar to a wooden token 1208,
being removed on matching of tokens in an adjacent region
within the array. In one such embodiment, a wooden token
1208 may be fixed at a position within the array, such that
upon removal and filling of tokens below the wooden token
1208 in the mx1 array (e.g. during step 314 of method 300),
the wooden token 1208 does not move or is not shifted down-

10

15

20

25

30

35

40

45

50

55

60

65

26

wards. In a further such embodiment, a boulder token 1222
may be moved or shifted upon removal of tokens below the
boulder token 1222. For example, in the example shown in
FIG. 12B, upon removal of one of the boulder tokens 1222
(e.g. upon matching a region adjacent to the tokens at the base
of the mxl array), the other boulder tokens 1222 may be
moved or shifted downward, while the wooden tokens 1208
may remain in position. In the example level displayed, the
goal includes removal of all of the boulder tokens 1222:
because the wooden tokens 1208 block the upper border of
the mxl array, during filling of the array, new tokens may not
be filled in above the boulder tokens 1222 after removal. This
may prevent matching from above the boulders, requiring
specific game play strategies. In a similar embodiment not
illustrated, a player may be required to lower a token, such as
a treasure chest token or similar token, to the bottom of the
mx] array by matching and/or removing any tokens below the
chest token. Upon reaching the bottom of the array, the rules
engine may remove the chest token, increment the player’s
score, decrement a goal counter, or perform other such func-
tions.

As shown in FIG. 12B, in many embodiments, the mx1
array may not have tokens in every cell, or may be considered
to have one or more “blank™ cells 1224. This may modify the
shape of the playing area as shown, requiring different game
play strategies. In one implementation, tokens may not move
across the blank cells 1224 during filling of the array. In
another implementation, such as where one or more standard
cells are in the array above a blank cell 1224, a token from
above a blank cell 1224 may be moved to fill a cell below the
blank cell 1224, jumping the gap, during filling of the array.

FIG. 12C is another screenshot 1200" of an embodiment of
a level of a token match game. As shown and as discussed
above, one or more stone tokens 1210 may be placed within
the mx! array and require removal as part of game play. In
some embodiments, one or more non-breakable tokens 1228,
such as steel tokens, may be placed within the array and may
not be removed or broken upon matching of tokens in adja-
cent regions. In some such embodiments, discussed in more
detail below in connection with FIGS. 13A-13B, to fill spaces
in the mxl array after removal of tokens, tokens may be
shifted in sideways or diagonal directions, such that the non-
breakable tokens 1228 remain fixed.

FIG. 12D is another screenshot 1200' of an embodiment of
a level of a token match game. In some embodiments, bomb
or counter tokens 1230 may be placed within the mx! array.
The bomb tokens 1230 may include a counter, set to prede-
termined and/or varying starting numbers. The counters may
decrement, either periodically or upon one or more selections
by a player during game play. In one such embodiment, upon
any counter reaching zero, the game may end, or another
penalty may be applied, such as loss of a spin or round, ascore
penalty, or other such result. In some embodiments as shown,
each bomb token 1230 may display a standard token beneath
the counter. The player may match the standard token as part
of'a matching region to remove the bomb token 1230, allow-
ing continuation of play.

FIG. 12E is another screenshot 1200"" of an embodiment
of'alevel of a token match game. As shown and as discussed
above in connection with FIG. 12B, blank cells may be used
within the mx] array to change the shape of the playing field.
In some embodiments, cells within the array may be marked,
shaded, surrounded with a border, or otherwise designated as
special cells 1232. The player may be required to match
tokens within the special cells 1232 one or more times to
remove the marking or designation, and may be required to
remove all of the special cell designations to complete the

US 9,333,421 B2

27

level. For example, as shown in the example embodiment of
FIG. 12E, the player may be required to remove all twenty
marked or special squares 1232 to complete the level.

FIGS. 13A-13B are successive screenshots 13004-13005
depicting an embodiment of a token match game with a
falling token mechanism, as discussed above. In a first
example move, a player may select token 1302 in the mxl
array to replace the token 1302 with token 1304 from the nxl1
array, matching and removing the two adjacent green square
tokens. Wooden tokens 13064-13065 may be “broken” or
removed as a result of being adjacent to the matched region.
During filling of the array, because of the stone and wooden
tokens above token 1302, tokens may not be shifted directly
downwards. Rather, as shown in FIG. 13B, token 1308a may
be shifted directly downwards to fill the empty cell left by
wooden token 13065. Token 13085 may be shifted diagonally
to the left twice, to fill the empty cell left by wooden token
1306a. Token 1308¢ may be shifted diagonally to the left
twice to stop on top of token 1308a. Other tokens above and
to the right of 1308¢ may be filled in from the top of the mxl
array as shown. This may result in one or more unfilled cells,
as shown in FIG. 13B, creating potential gameplay obstacles.

FIGS. 14A-14B are embodiments of icons for powers,
boosts, bonuses for a token match game. In some embodi-
ments, powers, boosts, and/or bonuses may purchased during
and/or before game play to provide additional game play
features. These features may, in many embodiments, be trig-
gered by the player, such as via selection of apower icon 1220
in FIG. 12A. In other embodiments, the features may be
triggered automatically by the rules engine and/or game
engine. For example, referring first to FIG. 14A, illustrated
are icons 1400-1408 representing boosts that may be selected
prior to game play and triggered by the rules engine and/or
game engine. For example, icon 1400, labeled “spin fairy”,
represents a boost that may be selected by a player prior to
game play and instructs the rules engine to, in instances where
a last token is in the nxl array that cannot be matched to any
corresponding cell in the mx] array to form a matching region,
remove the last token from the nxl array. This results in an
empty nxl array, triggering incrementing of a bonus counter
and refilling of the nx1 array, as discussed above in connection
with steps 324,326, and 314 of FIG. 3. In some embodiments,
the spin fairy boost may instruct the rules engine to remove
the last token in the nx1 array one time, two times, three times,
or any other number of times.

Similarly, icon 402 may, in some embodiments, represent a
“wild” boost that may instruct the token generator to increase
the rate at which wild tokens, able to match any standard
token, are selected for the nxl array. Icon 404 may, in some
embodiments, represent a “multiplier” boost that may
instruct the rules engine to increment the bonus counter prior
to beginning game play, as discussed above in connection
with step 326 of FIG. 3. Icon 1406, labeled “splash”, may
represent a boost that may instruct the token generator to
provide one or more splash tokens in the mxl1 array at the start
of'the game, such as horizontal, vertical, or area splash tokens
discussed above in connection with FIG. 6C. Icon 1408,
labeled “easy splash”, may represent a boost that may instruct
the token generator to select splash tokens responsive to
matching a smaller region size than during a typical game. For
example, as discussed above in connection with FIG. 6A, a
wild token may be placed by the rules engine in the mx1 array
responsive to the player matching a region of a predetermined
size, such as one containing seven tokens. Selection of the
easy splash boost may instruct the rules engine to place wild
tokens responsive to the player matching a region of a smaller
size, such as one containing five or six tokens.

25

30

40

45

28

FIG. 14B illustrates embodiments of icons representing
powers which may be triggered by a player during game play,
such as icons 1220 of FIG. 12A discussed above. For
example, selection of icon 1410, referred to as a “shifter”
icon, may allow the player to move any token in the nxl1 array
to another position in the nx] array, by dragging the token or
by first selecting the token to move and then by selecting a
destination for the token. In instances where the destination
cell includes a token, in some embodiments, the tokens may
be swapped, while in other embodiments, the token in the
destination cell may be replaced by the selected token.

In some embodiments, selection of icon 1412, referred to
as an “extra spin” icon, may instruct the rules engine to
increment a spin or round counter by a predetermined num-
ber, such as one spin, two spins, three spins, or any other
number. In some embodiments, selection of icon 1414,
referred to as a “wild” icon, may allow the player to select any
standard token in the mx! array and remove all other identical
tokens from the mx] array, as if the player had created a region
of said tokens including a wild token, as discussed above in
connection with FIG. 6A.

In many implementations, one or more of boosts 1400-
1408 and/or powers 1410-1414 may be unlocked upon the
player completing and/or reaching a designated level. For
example, in one such implementation, a player may not have
access to any boosts or powers on a first level, and may unlock
a first power upon reaching a predetermined level, such as
level ten. In many implementations, the player may be
required to purchase a boost and/or power prior to use. For
example, responsive to a selection of a boost or power, the
player may be presented with a purchase screen, discussed in
more detail below, and must complete a purchase prior to
being allowed to trigger the boost or power.

FIG. 14C illustrates embodiments of icons for displaying
or performing various functions on a life meter for an embodi-
ment of a token match game. As discussed above in connec-
tion with life or attempt meter 1102 of FIG. 11A, icon 1416
may be displayed with a counter representing a number of
lives or attempts to complete a level allowed to the player. The
player may be provided with an opportunity to purchase
additional attempts or lives, such as when the player has run
out of attempts. In some such implementations, icon 1416
may be replaced with icon 1418, or icon 1418 may be dis-
played in a purchase screen to indicate that the player may
purchase additional lives or attempts. Similarly, upon running
out of attempts or lives after failure to complete a level, icon
1416 may be replaced with icon 1420. For example, icon
1420 may be displayed in place of an attempt meter 1102 as
in FIG. 11A. The user may select the icon to initiate a dialog
to purchase additional lives. Icon 1422 may be used to iden-
tify a user selectable interface element to send or gift lives or
attempts to another player of the game. In some embodi-
ments, icon 1424 may be displayed in place of icon 1416, for
example, as the attempt meter 1102 of FIG. 11A.

FIG. 15A is a screenshot of an embodiment of a level
information screen 1500qa for a token match game. In some
embodiments, the level information screen 1500a may be
displayed after a player has selected a level, and may include
a name and identifier of the level, indicators 1502 of a previ-
ously completed goal of the level (or lack of a previously
completed goal, as shown), and/or an identifier ofa goal of the
level 1504. In some embodiments, the level information
screen 15004 may include one or more icons 1506 represent-
ing boosts that the player may purchase or select to be applied
to game play, as discussed above. The level information
screen 15004 may also include a user interface element 1508
to begin playing the level, and/or a element 1510 to connect to

US 9,333,421 B2

29

a social network. Connecting to a social network may allow
the playerto send/receive gifts from other players in the social
network, such as lives or attempts, bonuses, powers, boosts,
orother such items; compare scores or level goals with others;
and/or provide or receive challenges from other players.

In one embodiment, as discussed above, a player may
purchase a boost to be applied to game play of a level by
selecting an icon 1506 during display of a level information
screen 15004. FIG. 15B is a screenshot of an embodiment of
a boost purchase screen 15005 for a token match game. As
shown, the boost purchase screen 15006 may include an
identifier or description 1520 of a boost, and may include a
user interface element 1522, such as a button, to purchase the
boost. Purchases may be performed as an in-application pur-
chase, purchase via a separate web page or other application,
or via any other such means.

Similarly, as discussed above, during game play, a user
may select a power via an icon 1410-1414 as shown in FIG.
14B or one of icons 1220 as shown in FIG. 12A. FIG. 15C is
a screenshot of an embodiment of a power purchase screen
15004' for a token match game. As with purchase screen
15005, the power purchase screen 15005 may include an
identifier or description 1520' of a power, and may include a
user interface element 1522'; such as a button, to purchase the
power. Once purchased, an icon 1410-1414 or 1220 may be
highlighted or displayed with a border, glow, or counter to
indicate that the player has purchased the power and may
trigger the power during game play.

Although discussed in terms of purchases, in some imple-
mentations, other methods may be used to obtain powers
and/or boosts. For example, powers or boosts may be
obtained by successful completion of goals during a level
(e.g. aboost or power may be enabled for a next level, respon-
sive to a user attaining three stars during a previous level), or
by performing one or more tasks, such as completing a chal-
lenge or challenging another player, reaching a high score,
lowering a chest token to the bottom of an mxl1 array, etc.

FIG. 16 is a screenshot of an embodiment of a level
completion screen 1600 for a token match game. The level
completion screen 1600 may include an identifier and/or
name of the level, an identifier of the goals of the level, and/or
an indication of goals achieved 1602 and/or a score obtained
1604. In some embodiments, a level completion screen 1600
may include an identification of a top score 1606 and/or an
indicator that the player attained the top score 1606. Level
completion screen 1600 may also include one or more user
interface elements, such as buttons 1608, for allowing the
player to select to retry the level, select a next level or different
level (e.g. from a level selection screen, as discussed above),
and/or allowing the player to brag by sending an email, text or
multimedia message, in-game message, and/or message on a
social network to a friend or other player. Such messages may,
in some implementations, include a challenge or link to allow
the recipient to initiate play of the same level, a game with the
same goal, or a challenge game based on the level with a goal
equal to the sender’s score. In some embodiments, the level
completion screen 1600 may include an interface element
1610 for connecting to a social network, as discussed above.

While the invention is particularly shown and described
with reference to specific embodiments, it should be under-
stood by those skilled in the art that various changes in form
and detail may be made therein without departing from the
spirit and scope of the invention described in this disclosure.

30

What is claimed:

1. A method for a token match game, comprising:

generating, by a token generator executed by a processor of
a computing device, an mx] array of randomly selected

5 tokens, the mxl array stored in a first location in a

memory device of the computing device;

generating, by the token generator, an nxl array of ran-
domly selected tokens, the nx] array stored in a second
location in the memory device;

10 subsequently receiving, by a rules engine executed by the
processor, a selection by a user of the computing device
via an input device coupled to the computing device, of
a cell within the mx] array;

determining, responsive to receiving the selection of the

15 cell within the mxl array, by the rules engine, that
replacement of a first token in the selected cell within the
mx] array with a second token from a corresponding cell
of the nxl array results in a region of adjacent identical
tokens within the mxl array via comparison of an iden-

20 tifier stored in the second location in the memory device
to identifiers stored at positions adjacent to a corre-
sponding position in the first location in the memory

device; and
editing the mxl array stored in the first location of the
25 memory device to remove, by the rules engine, the

tokens of the region of adjacent identical tokens within
the mx] array, responsive to the determination.

2. The method of claim 1, further comprising incrementing
a score for a user, by the rules engine, responsive to removal

30 ofthe tokens of the region of adjacent identical tokens within
the mx] array.

3. The method of claim 1, further comprising generating,
by the token generator, a number of additional tokens corre-
sponding to the number of removed tokens of the region of

35 adjacent identical tokens within the mx] array, the generated
additional tokens stored in an empty portion of the first loca-
tion of the memory device.

4. The method of claim 1, further comprising:

iteratively shifting a token in the mx1 array into an adjacent

40 cell not including a token until at least one cell at the
edge of the mx] array does not include a token; and
generating, by the token generator, at least one new token
for the corresponding at least one cell, the generated at
least one new token stored in an empty portion of the first
45 location of the memory device.
5. The method of claim 1, further comprising:
identifying, by the rules engine, that a token adjacent to the
region of adjacent identical tokens within the mx! array
is a wild token; and
50 editing the mxl array stored in the first location of the
memory device to remove, by the rules engine, the wild
token and at least one additional token from the mxI
array identical to the first token, but not adjacent to the
region of adjacent identical tokens.
55 6. The method of claim 1, further comprising:
identifying, by the rules engine, that no replacement of a
third token in a cell within the mx] array with a fourth
token from a corresponding cell of the nx] array results
in a region of adjacent identical tokens within the mx1
60 array; and
generating, by the token generator, a second nxl array of
randomly selected tokens, responsive to the identifica-
tion.

7. The method of claim 6, wherein providing the second

65 nxl array of randomly selected tokens further comprises:
rendering an interface element for display to the user via an
output device coupled to the computing device;

US 9,333,421 B2

31

receiving a selection of the interface element by the user
via the input device coupled to the computing device;
and

generating the second nxl array of randomly selected
tokens, responsive to the selection of the interface ele-
ment by the user.

8. The method of claim 7, wherein the interface element is

a lever.
9. The method of claim 6, wherein generating the second
nxl array of randomly selected tokens further comprises
replacing a previous nxl array stored at the second location in
the memory device.
10. The method of claim 6, wherein generating the second
nx] array of randomly selected tokens further comprises dec-
rementing a hand counter.
11. A system for a token match game, comprising:
a computing device comprising a memory device and a
processor executing a token generator and a rules engine
stored in the memory device, the computing device
coupled to an input device;
wherein the token generator is configured for:
generating an mxl array of randomly selected tokens, the
mx] array stored in a first location in the memory
device, and

generating an nx] array of randomly selected tokens, the
nxl array stored in a second location in the memory
device; and
wherein the rules engine is configured for:
subsequently receiving a selection, by a user of the com-
puting device via the input device, of a cell within the
mx] array,

determining, responsive to receiving the selection of the
cell within the mxl array, that replacement of a first
token in the selected cell within the mx] array with a
second token from a corresponding cell of the nxl
array results in a region of adjacent identical tokens
within the mx1 array via comparison of an identifier
stored in the second location in the memory device to
identifiers stored at positions adjacent to a corre-
sponding position in the first location in the memory
device, and

editing the mx] array stored in the first location of the
memory device to remove the tokens of the region of
adjacent identical tokens within the mxl array,
responsive to the determination.

12. The system of claim 11, wherein the rules engine is
further configured for incrementing a score for a user, respon-
sive to removal of the tokens of the region of adjacent iden-
tical tokens within the mxl array.

13. The system of claim 11, wherein the token generator is
further configured for generating a number of additional
tokens corresponding to the number of removed tokens of the

10

15

20

25

30

35

40

45

50

32

region of adjacent identical tokens within the mx] array, the
generated additional tokens stored in an empty portion of the
first location of the memory device.
14. The system of claim 11, wherein the rules engine is
further configured for iteratively shifting a token in the mxI
array into an adjacent cell not including a token until at least
one cell at the edge of the mx!1 array does not include a token;
and
wherein the token generator is further configured for gen-
erating at least one new token for the corresponding at
least one cell, the generated at least one new token stored
in an empty portion of the first location of the memory
device.
15. The system of claim 11, wherein the rules engine is
further configured for:
identifying that a token adjacent to the region of adjacent
identical tokens within the mx] array is a wild token; and

editing the mxl array stored in the first location of the
memory device to remove the wild token and at least one
additional token from the mxl array identical to the first
token, but not adjacent to the region of adjacent identical
tokens.

16. The system of claim 11, wherein the rules engine is
further configured for identifying that no replacement of a
third token in a cell within the mx1 array with a fourth token
from a corresponding cell of the nxl array results in a region
of adjacent identical tokens within the mxl array; and

wherein the token generator is further configured for gen-

erating a second nx! array of randomly selected tokens,
responsive to the identification.

17. The system of claim 16, wherein the computing device
is further coupled to an output device, and wherein the rules
engine is further configured for rendering an interface ele-
ment for display to the user via the output device, and receiv-
ing a selection of the interface element by the user via the
input device coupled to the computing device; and

wherein the token generator is further configured for gen-

erating the second nxl array of randomly selected
tokens, responsive to the selection of the interface ele-
ment by the user.

18. The system of claim 17, wherein the interface element
is a lever.

19. The system of claim 16, wherein the token generator is
further configured for generating the second nxl array of
randomly selected tokens by replacing a previous nxl array
stored at the second location in the memory device.

20. The system of claim 16, wherein the rules engine is
further configured for decrementing a hand counter, respon-
sive to the token generator generating the second nx] array of
randomly selected tokens.

#* #* #* #* #*

